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Tools and Methods for Addressing Autocorrelation in Energy Modeling 

 
The NW Industrial Strategic Energy Management (SEM) Collaborative was formed in 2012 by the 
Bonneville Power Administration (BPA), Energy Trust of Oregon (ETO), and the Northwest Energy 
Efficiency Alliance (NEEA) for the purpose of identifying and addressing market barriers to SEM 
adoption in the industrial sector. Three teams were subsequently formed to focus on: 1) Small-to-
Medium Industrial Solutions, 2) Market Analysis and Planning, and 3) Energy Tracking and Savings 
Protocols (ETSP).  
 
The members of the ETSP team include representatives from BPA, ETO, NEEA, Idaho Power, U.S. 
Department of Energy, Consortium for Energy Efficiency, Puget Sound Energy, BC Hydro, and the 
Northwest Food Processors Association.  This paper is the initial work product of the ETSP team, which 
was tasked with the identification of consistent and defensible methodologies for measuring and 
verifying SEM energy savings.  The examples in this paper were drawn from recent modeling efforts in 
BPA’s Energy Smart Industrial and the Energy Trust of Oregon’s Production Efficiency programs.   

Introduction 
After reviewing SEM measurement and verification (M&V) protocols from different programs, the 
ETSP team identified autocorrelation as a common statistical issue in industrial data sets.  
Understanding that autocorrelation has the potential to negatively affect the predictive capability of 
regression-based energy models used to create adjusted energy baselines, more consistent treatment of 
this issue may help improve confidence in SEM-based savings, and thereby address a potential market 
barrier.  The ETSP team compiled this paper for the purposes of outlining the implications of 
autocorrelation in the context of SEM measurement and verification, and providing examples of how 
program implementers have successfully identified and treated the presence of autocorrelation in 
regression-based energy models. 

Statistical Definition 
Autocorrelation is present when the error term in period t is related to the error term in period t-1.  More 
simply stated, autocorrelation is characterized by a systematic pattern in the error term (residuals) of the 
model.  This systematic pattern may be due to omitted variables from the model, serially correlated 
predictors coupled with model specification error, or correlated disturbances that are beyond the scope 
of predictor variables.  The pattern in residuals also violates the ordinary least squares (OLS) assumption 
of independent error terms and may cause misinterpretation of regression results due to understated 
standard errors  (apparent accuracy/precision better than it really is).  The degree of autocorrelation is 
measured by the autocorrelation coefficient, also called the autocorrelation parameter, and can take on 
values between zero and one.  Autocorrelation is said to be present when the autocorrelation coefficient 
(ρ) is significantly greater than zero.  The Durbin-Watson test is another common approach for 
determining if the regression model errors are autocorrelated.  For uncorrelated errors, the value of the 
Durbin-Watson statistic should be approximately 2.  Montgomery (2008) provides guidance on 
calculating lower and upper bounds for the Durbin-Watson statistic, which are a function of sample size, 
the number of predictor variables and the desired confidence level.    Most statistical regression 
packages will calculate the autocorrelation coefficient and the Durbin-Watson test statistic.   
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Implication for Model Results 
In cases where the residuals of a regression-based model are autocorrelated, the coefficients in the model 
remain unbiased but their standard errors may be significantly underestimated.  This could lead to 
models that include insignificant independent variables and underestimated error bounds around model 
predictions.  In the context of SEM measurement and verification, a significant implication of 
autocorrelation is an overrepresentation of the confidence level associated with reported savings. 
 
When autocorrelation is present and accounted for with an energy model, it can negatively impact the 
effective number of data points needed to meet a required confidence level.  Simply stated, if a time 
series of length N exhibits positive autocorrelation, the effective number of independent observations N' 
is given by: 
 

Equation (1):  ܰᇱ ൌ ܰ ∙ 	
ሺଵିఘሻ
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At a fundamental level, if the autocorrelation coefficient (ρ) is known, the true standard error may be 
estimated by multiplying the calculated standard error by factor f: 
 

Equation (2):  ݂ ൌ ට
ଵାఘ

ଵିఘ
 

 
The estimate of the true standard error can then be used to assess the impact on the statistical 
significance of a predictor variable.  Statistical significance is normally based on the t-statistic, which is 
the estimated value of the beta coefficient divided by its standard error.  Thus, the inflation of the 
standard error by factor f will have the effect of reducing the value of the t-statistic. 
 
Alternatively, a comparison of Fractional Savings Uncertainty of two or more competing models may be 
used to assess the impact of autocorrelation on inflation of the standard errors. 

Example #1:  Integrated Circuit Manufacturing 
Autocorrelation creates uncertainty when using an energy model to estimate energy savings. If the 
residuals from the baseline model are significantly autocorrelated, there are a few things to watch out for 
that may be causing the autocorrelation.  First, the model may be missing a variable – for instance, if 
weather were a significant driver of energy consumption but an ambient temperature variable was 
missing from the model, this will cause significant autocorrelation.  Next, there could be major changes 
during the baseline period that would cause a major trend in the residuals before and after the change; 
this would result in significant autocorrelation.  Finally, autocorrelation, by nature, increases as the data 
granularity increases.  If the data interval is too small, increasing the interval and therefore decreasing 
the sample size will most likely reduce the autocorrelation. However, reducing the sample size also 
reduces the statistical power of the model, so this method should be used with caution. 
 
Model Misspecification:  Missing Variable 
First, it is possible that a missing variable is causing the baseline trends.  In the example of a large 
integrated circuit manufacturer, a baseline period of two years was looked at with a satisfactory model, 
but unsatisfactory autocorrelation.  The output of the model is shown below: 
 



- 3 -   
   

 
 

 
 

Figure 1.  Graphical and Tabular Statistical Analysis Outputs of Two-Parameter Daily Regression 
Model – Two-Year Baseline – Significant Autocorrelation 
 
This model has an R-squared of 0.71 and all of the t-statistics are significant, but the autocorrelation 
coefficient and Durbin-Watson show significant autocorrelation.  Investigation of the relationship 
between the electricity usage and wet-bulb temp shows a non-linear relationship. This can also be seen 
in the scatter plot between the residuals and the predicted electricity.  In this case, the autocorrelation is 
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probably a symptom of missing a variable or a non-linear relationship between energy and one or more 
predictor variable.  A temperature change point model and polynomial model were considered. After 
evaluating the fit of both, a polynomial term for the wet-bulb temperature variable was selected over the 
two-year baseline.  The results of the new model are shown below: 
 

 

 Figure 2.  Graphical and Tabular Statistical Analysis Outputs of Three-Parameter Daily Regression 
Model – Two-Year Baseline – Significant Autocorrelation 
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This regression output shows significant improvement over the two-parameter model, with an R-squared 
of 0.87 and an improvement in autocorrelation. However, with an autocorrelation coefficient of 0.67 and 
a significant Durbin-Watson of 0.65, this model is still autocorrelated.   
 
Model Misspecification:  Discontinuity or Change in Mode 
More concerning, the cumulative sum of the residuals (CUSUM) time series plot appears to be in a 
downward trend going into the intervention period, which, if it continues, could be misinterpreted as 
energy savings.  In addition, the maximum CUSUM peak is more than 0.5% of the annual usage, which 
isn’t overly high but still a clear trend.  After further discussion with the site, it was discovered that a 
large capital improvement was installed right at the time the downward trend in the CUSUM started, and 
therefore the site was using less energy to produce the same amount of product.  This capital project is 
likely the reason there is such a strong trend, which gives the modeler two choices: 
 
1. Reduce the baseline period to a year, so that the baseline only includes operation with the capital 

project, or  
2. Create a categorical variable which is 0 before the capital project and 1 after, to allow the model to 

solve for the downward trend.   
 
In this case, the modeler selected option 1 based on the fact that there were enough data points to cut out 
a year’s worth of data, the model would be simpler with fewer variables, plus program-specific 
considerations.  
 
After excluding the first year of baseline data to eliminate the significant change in the facility’s energy 
usage, the resulting model is shown below: 
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Figure 3.  Graphical and Tabular Statistical Analysis Outputs of Three-Parameter Daily Regression 
Model – One-Year Baseline – Improved Autocorrelation 
 
By eliminating a year of baseline data and therefore reducing the major trend that could have appeared 
to be savings during the intervention period, the new model’s autocorrelation has improved, moving 
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from an autocorrelation coefficient of 0.69 to 0.59 and a significant Durbin-Watson from 0.63 to 0.81.  
While this is an improvement in the autocorrelation, it is does not address the concern that the value of 
the standard errors is underrepresented.  Looking at the CUSUM graph, the trends are smaller in 
magnitude, with a maximum CUSUM peak of only 0.05% of their annual usage as well as showing both 
positive and negative trend at a much higher frequency.  Overall, the new one-year baseline model is far 
superior to the two-year model with the significant downward trend.   
 
Data Granularity 
Because autocorrelation is still an issue, it is worth reviewing the data interval to determine whether 
consolidating the data into weekly data points would help reduce the autocorrelation.  Generally, the 
shorter the interval, the more autocorrelated the data.  However, one should be careful about attempting 
to improve model fitness or address autocorrelation by aggregating to a longer time unit (e.g., from daily 
to weekly), since what is accomplished is masking the noise in the data set.  The resulting weekly model 
is shown below: 
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Figure 4.  Graphical and Tabular Statistical Analysis Outputs of Three-Parameter Weekly Regression 
Model – One-Year Baseline –Improved Autocorrelation 
 
As predicted, going to a weekly model does improve the autocorrelation, moving from an 
autocorrelation coefficient of 0.59 to 0.34 and a significant Durbin-Watson from 0.81 to 1.29.  In order 
to decide which model will be the most accurate to detect savings, the Fractional Savings Uncertainty 
was calculated for each of the candidate models,  The Fractional Savings Uncertainty output is the 
uncertainty of the model’s predicted value for a given confidence level, divided by the expected savings 
from the intervention based on the methodology described in ASHRAE Guideline 14-20021. The results 
are shown in the following table: 
 
Table 1.  Fractional Savings Uncertainty Analysis of Competing Models 

 
Model Description 

 
n 

Autocorrelation 
Coefficient 

(Durbin Watson) 

 
Coefficient 
of Variation 

Fractional Savings 
Uncertainty at 80% 

Confidence1 

two-parameter daily model using 
production and wet-bulb 
temperature – two-year baseline 

729 0.76 (0.47) 0.0155 14.35% 

three-parameter daily model with 
second-order polynomial wet-bulb 
and production – two-year baseline 

729 0.67 (0.65) 0.010 7.93% 

three-parameter daily model using 
second-order polynomial wet bulb 
and production – one-year baseline 

365 0.59 (0.81) 0.0075 5.81% 

three-parameter weekly model 
using second-order polynomial wet-
bulb and production – one-year 
baseline 

52 0.34 (1.29) 0.0053 7.17% 

(1)  Fractional Savings Uncertainty analysis performed based on a 365-day baseline and treatment period, 
assuming a project savings of 2.5%. 

 
From the Fractional Savings Uncertainty, the daily model using the second-order polynomial wet-bulb 
temperature and a one-year baseline is the best model.  This model still does not have ideal 

                                                
1  
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autocorrelation, but the larger data set associated with a daily interval results in the best predictive 
capability among the competing models.   

Conclusions 
Autocorrelation is a common issue encountered in the process of developing regression-based models 
for industrial SEM projects.  Large systems tend to stay in the same state from one period to the next, 
thus the persistent nature of industrial processes makes them particularly vulnerable to autocorrelation.  
Moreover, ambient-dependent facilities modeled at a daily interval are inherently prone to 
autocorrelation due to the tendency for ambient patterns to persist over multiple days, combined with the 
model specification errors inherent in industrial applications.   
 
Because the presence of autocorrelation impacts the predictive capability of the model, practitioners 
should be familiar with tools for characterizing autocorrelation, understand common methods of 
improving the issue, and understand methods for evaluating competing models with different levels of 
statistical fitness and autocorrelation.  This paper begins to explain some of tools and methods, but a 
practitioner with deep interest in the background and theory of autocorrelation is encouraged to pursue a 
more in-depth review of statistical literature.   
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