Tools and Methods for Addressing Multicollinearity in Energy Modeling

The NW Industrial Strategic Energy Management (SEM) Collaborative was formed in 2012 by the Bonneville
Power Administration (BPA), Energy Trust of Oregon (ETO), and the Northwest Energy Efficiency Alliance
(NEEA) for the purpose of identifying and addressing market barriers to SEM adoption in the industrial sector.
Three teams were subsequently formed to focus on: 1) Small-to-Medium Industrial Solutions, 2) Market Analysis
and Planning, and 3) Energy Tracking and Savings Protocols (ETSP).

The members of the ETSP team include representatives from BPA, ETO, NEEA, Idaho Power, U.S. Department of
Energy, the Consortium for Energy Efficiency, Puget Sound Energy, BC Hydro, and the Northwest Food
Processors Association. This paper is the initial work product of the ETSP team, which was tasked with the
identification of consistent and defensible methodologies for measuring and verifying SEM energy savings. The
examples in this paper were drawn from recent modeling efforts in BPA’s Energy Smart Industrial and the
Energy Trust of Oregon’s Production Efficiency programs.

Introduction

After reviewing SEM measurement and verification (M&V) protocols from different programs, the
ETSP team identified multicollinearity as a common statistical issue in industrial data sets.
Understanding that multicollinearity has the potential to affect the specification of regression-based
energy models used to determine adjusted baselines, more consistent treatment of this issue may help
improve confidence in SEM-based savings, and thereby address a potential market barrier. Therefore,
the team compiled this paper for the purposes of outlining the implications of multicollinearity in the
context of SEM measurement and verification, and providing examples of how program implementers
have successfully identified and treated the presence of multicollinearity among a set of predictor
variables.

Statistical Definition

Multicollinearity is present when two or more predictor variables in a regression model are correlated
among themselves. When two independent variables tend to move together through time, including both
variables may not add appreciably to the explanatory power of the model, compared to just having one
or the other in the model. Essentially, the additional variable has little new information to provide.
While perfect multicollinearity involves two variables that are linear translations of each other (R=1),
partial-multicollinearity is more commonly observed in the context of regression-based energy models.

In the practice of developing predictive energy models, multicollinearity typically arises from one of the
following:

1. There are two or more observed factors that each drive energy consumption and that trend
together in fairly consistent ways.

2. There’s an observed factor or factors that drive energy consumption, and these drivers also drive
other observed variables.

3. There’s an unobserved factor that drives energy and some other observed factors. Then the
observed factors are all proxies for the true drivers, and the modeler is faced with developing the
best possible predictive model from the available data.
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Implication for Model Results

When multicollinearity is present, the coefficient of any one independent variable depends on which of
the other correlated variables are included in the model. The ordinary least squares (OLS) results may
indicate a good overall fit to the sample data in terms of R? and overall predictive capability. However,
including or excluding other independent variables or using a different sample (or base period) may lead
to large changes in the estimated coefficients when multicollinearity exists. Hence, the coefficients must
be interpreted given the other explanatory variables in the model. The reliability of the coefficients will
be reflected appropriately in the OLS-based standard errors.

The presence of correlated variables should serve as a warning that the statistical significance of a
variable in a particular regression does not by itself indicate how closely that variable is correlated with
energy consumption. Therefore, when faced with multicollinear variables, the modeler should exercise
caution in excluding any variables that might actually be significant drivers of energy use.

Example #1: Municipal Wastewater Treatment Facility

Approximately 3-4% of the electricity consumed in the U.S. is used for the treatment, conveyance, and
disposal of water and wastewater. The vast majority of electric utilities have a wastewater treatment
(WWT) facility within their service areas, and there is a growing awareness of the benefits of SEM
among WWT professionals. In the practice of establishing meter-level, regression-based energy models
for wastewater treatment facilities, SEM practitioners are often confronted with two or more variables
that exhibit varying degrees of multicollinearity. While plant influent is likely a primary energy driver,
a range of other factors may affect the energy use within the facility. Some of these are physically
related to the influent flow.

This example provides a short case study in the treatment of multicollinearity in a wastewater treatment
facility. The program participant is a municipal operator of a 10-40 million gallon per day (MGD) open-
system treatment facility in the Pacific Northwest. Figure 1 provides an illustration of the main process
steps in the plant’s operations. The electrical energy measurement boundary was defined by the utility’s
revenue meter, which covered both the water treatment and solids handling systems.

open system Electrical Energy Measurement Boundary

-—— = d

Municipal | Headworks Primary Oxygenation Secondary
Sewage _Ié®9 and Grit > Clarification = Tanks Clarification & —'—:—) effluent
| Removal Effluent Pumping | discharge
! I
| | !
|
| |
: A |
Storm Water I Solids Aerobic Anaerobic Dewatering |
| Thickening Digestion > Digestion — __:->Iandfill
| and Blending I
! |

r
1
I
I
1
I
I
I
1
I
I
I
1
I
I
1
I
I
I
1
I
I
I
I
I
I
1
I
I
I
1
I
I
1
I
I
I
1
I

Figure 1. Process Flow lllustration
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Review of Hypothesis Variables

Equipped with an informed understanding of the process steps and electrical loads, the model developer
begins by establishing a set of hypothesis predictor variables. Table 1 provides a summary of the
variables selected at the outset of this effort, with a brief explanation of each variable’s association with

energy use and the potential mechanisms for multicollinearity with other variables.

Variable

Table 1. Common Energy-Driver Variables in WWT Facilities

Influent
(untreated wastewater
into plant)

Association with Energy

Key driver of system load in most
process steps, particularly the energy-
intensive secondary treatment step.

Potential for Collinearity
Typically, plant influent will always be
included, and thereby becomes the
reference variable for assessing
multicollinearity.

Effluent (treated, clean
water leaving plant)

Also closely associated with plant load.

Effluent volume is typically closely
associated with influent, but offset by
the lead time of the treatment process.

Solids Processed

Indicative of the load on the solids-
handling portion of the plant.

If the plant is run continuously, seven
days per week, this parameter may be
strongly correlated with influent.

Precipitation

In an open system that collects storm
water, higher precipitation leads to more
influent, with a lower concentration of
solids and biological oxygen demand.

Influent and precipitation typically follow
similar trends, depending on the system
design.

Ambient Temperature

The solubility of oxygen in water varies
with temperature, which impacts
aeration load.

Ambient temperature and precipitation
may be loosely correlated.

Before assessing multicollinearity, the model developer may perform a regression that includes all the
hypothesis variables, for the purpose of gaining a cursory assessment of the relative statistical
significance each variable. Table 2 shows the regression output for the five variables outlined in the

preceding table.

Table 2. Regression Results When all Five Predictor Variables are Included

Intercept

Influent (Avg MGD)
Effluent (Avg MGD)

Solid (Ibs/day)
Precipitation (inches/day)
Ambient Temp (°C)

Coefficients  Std Error t Stat P-value
40,508 510.2 79.6  1.01E-222
652.9 33.76 19.34
45.14 2015 .55
0.059 0.01 8.47
-2,763 521.7 -5.30
7.0 162 -0.44]

Explanation of Coefficient Value

7.8E-57 Influent is the primary driver of plant load

0.12 The 12-24 hr lag may result in the negative coefficient
7.6E-16 This reflects the energy intensity of the solids handling equip
2.1E-07 Rainfall results in less concentrated influent

0.66 Regression can't detect incremental effect of temperature

A commonly-applied rule of thumb would guide the modeler to carefully consider the statistical
significance of variables with absolute value T-statistics of less than 2.0. For example, the IPMVP
references a T-statistic of greater than 2.0 as providing a reasonable degree of confidence of a variable’s
impact on energy use. On this basis, effluent and ambient temperature should not be treated as
statistically significant variables, while the other four variables should be retained for further analysis.
However, the T-statistic for effluent indicates moderate statistical significance, and the model developer
can’t dismiss the possibility that its impact on energy is understated due to the inability of the regression
analysis to empirically separate the effect of influent volume from the effect of effluent volume over the

Uy
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observed range of conditions. A basic examination of the scatter diagrams between these two variables
and energy use, shown in Figures 2 and 3, leads to one of the following three conclusions:

e Influent and effluent are both significant drivers of energy use,

e Influent is a driver of both energy and effluent, resulting in a strong correlation between effluent
and energy (or the reverse),

e Influent, effluent, and energy are all driven by some other factor, resulting in correlation among
the three variables. Identifying the true “driver” may require a more detailed understanding of
the mechanism at play.
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Figure 2. Influent versus Energy Use Figure 3. Effluent versus Energy Use

In the practice of multivariable regression, a general assessment for multicollinearity can be performed
by regressing each predictor variable against the other hypothesis variables, and examining the
coefficient of determination (R?) of each relationship. As a rule of thumb, any bivariate correlation with
R?>0.7 is an indication that multicollinearity needs to be carefully considered in the variable selection
process. The generation of a matrix of x-y scatter diagram, as shown in Figure 4, can provide a
reasonable assessment of correlation among two variables. However, it must be recognized that
multicollinearity is a multivariate problem, and while a simple matrix of correlation coefficients and
scatter diagrams can identify two independent variables that are highly correlated, this exercise has
limited ability to detect an independent variable that is highly correlated to a combination of predictor
variables. A more complete assessment regresses each independent variable on all of the others.
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Figure 4. Scatter Diagram Matrix
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Casual inspection of the scatter plots confirms the presence of collinearity between the influent and
effluent variables, which is validated by their respective coefficient of determination (R*=0.87). As one
might expect, influent and precipitation exhibit a modest degree of correlation, but the R® of 0.43
doesn’t violate common statistical guidelines.

Variance Inflation Factor

At this point, the model developer may decide to further examine the severity of multicollinearity using
the Variance Inflation Factor (VIF). While this exercise isn’t normally required in the development of
energy models, it may provide additional insight when one encounters counterintuitive results from a
regression output (e.g. beta coefficient signs or magnitudes, low t-stats). The VIF provides a reliable
index of how much the variance of an estimated regression coefficient is increased because of the
collinearity, when compared to having uncorrelated predictors. The VIF is useful because it provides an
indication of the inter-correlation effects among all the variables, not just two at a time.

Equation 1 provides a useful formula for calculating VIFs for multiple predictor variables:

S?(n — 1)SE?
Equation (1): Variable Inflation Factor (VIF;) = ———L

MSEresiduals
The following table shows the standard Excel regression output, with an additional column for each
variable’s standard deviation, along with the VIF calculated by Equation (1). Note that the temperature
variable was determined to be statistically insignificant, and was removed from the set of hypothesis
variables. Variance Inflation Factor values range from one, indicating that a variable isn’t correlated
with any other predictors, to infinity, for near perfect correlation in which there exists no unique solution
for the regression coefficient. As a rule of thumb, if any of the VIF values is greater than five, the
modeler should consider taking steps to address multicollinearity.

Table 3. Regression Output with VIF for Five Variables

Regression Statistics

Multiple R 0.947
R Square 0.897
Observations 348
ANOVA
df 55 MS F Sig F
Regression 4 8.26E+09 2.07E+09 745.1 1.1E-167
Residual 343 9.51E+08 2,771,923
Total 347 9.21E+09

Coefficients Std Error  t Stat P-value VIF

Intercept 40,424  317.31  127.40  7E-291
Influent (Avg MGD) 656.5 32.70 20.07 7.94E-60 9.59
Effluent (Avg MGD) -45.55 29.11 -1.56 0.12 7.79
Solid (Ibs/day) 0.059 0.01 8.46 8E-16 1.00
NOOA Precip (in/day) 2,799  514.54 -5.44 1E-07 1.85
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To put the Variance Inflation Factor figure in context with other regression statistics, the VIF of 9.59 for
influent indicates that the standard error term associated with its beta coefficient is approximately three
times as large as is would be if it were uncorrelated with other predictor variables (v9.59 = 3.1). In
this case, the model developer considered the implications of eliminating either the influent or effluent
variable from the model specification.

Stepwise Regression and Model Specification

A typical approach in this decision process involves performing the regression with and without each
variable. For illustrative purposes, Table 4 shows the results of a stepwise regression process, beginning
with precipitation as the single variable.

Table 4. Stepwise Regression Summary

Precip Solids Effluent Influent
Trial Predictor Variables R-sqr CV-RSME B Std Error B Std Error B Std Error B Std Error
(D) |Precip 0.29| 7.90%| 11,662| 989.6
@ Precip, Solids 0.32 7.70%]| 11,729 965.3 0.077| 0.0177
@ Precip, Solids, Effluent 0.77 4.47% 2,152 665.0 0.062| 0.0103 483 18.3
@ Precip, Solids, Influent 0.89 3.04% 2,615 610.2 0.059| 0.0070 - - 610 14.0
@ Precip, Solids, Effluent, Influent 0.90 3.04% -2,799 514.5 0.059| 0.0070 -45.5 29.11 657 32.7
@ Effluent only 0.75 4.73% - - - - 518 16.3
@ Influent Only 0.86 3.46% - - - - - - 565 12.0

A comparison of the model fitness statistics, coefficient of determination (R?), and the coefficient of
variation (CV-RSME), shows incremental improvement in model resolution provided by each variable.
A comparison of trials demonstrates that retaining influent as the construct of plant load (Trial (3))
provides a higher level of model resolution versus the alternative option of retaining the effluent variable

(Trial (3)).

Trial (5) captures the original hypothesis model, without ambient temperature. While the presence of
multicollinearity didn’t affect the predictive capability of the model, including both variables in the
model produces a beta coefficient for effluent that can’t be interpreted as an accurate representation of
effluent’s independent incremental impact on plant energy use. Thus, one can observe instability in the
beta results for effluent among different trials (Trial (5) versus (3), and Trial (5) versus (6)). If an
accurate characterization of a variable’s independent influence on energy use is a desired outcome of the
regression exercise, then this phenomenon should be recognized. Also, the presence of multicollinearity
in Trial (5) may have led the modeler to exclude the effluent variable due to the marginally significant
T-statistic, without further consideration. While that decision would have led to the same outcome in
this example, in other instances it could result in the erroneous exclusion of a significant predictor
variable, resulting in omitted variable bias.

The final model specification for this waste treatment facility, as outlined in Trial (4), is given by
Equation (2):

kWh

day
= 40,533 + 610.2 (Influent) + 0.059 (Solids) — 2,615 (Precipitation)
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This model meets the basic criteria of the program administrator’s SEM M&YV guidelines. Figures 5 and
6 illustrate the strong agreement between actual and predicated energy consumption values across the
observed range of energy consumption, and the unbiased nature of the model error (residuals) over the
baseline period.
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Figure 5. Actual versus Predicted Energy Use (Trial 4) Figure 6. Time Series of Residuals (Trial 4)

Example #2 - Wood Products Company

When trying to identify important energy drivers, a company often provides many different production
variables to add into the model. Many times, these variables are correlated to each other because all
production tends to trend together. Depending how closely related to each other the variables are, a
modeler much decide if multicollinearity in the model is causing an unstable model or if all variables are
necessary to use to describe energy use at the site. One example of this is a wood products company
that creates wood pieces of varying lengths. When providing the production energy driver data, the
facility provided the following variables:

Table 5. Production Variables Provided by Plant

Production Variable | Description

Board-feet in Board feet is the thickness of the board width times the
length. This variable represents the incoming lumber
into the plant.

Board-feet out Total board-feet out is measured after the plant
converts the incoming lumber into pieces of varying
lengths and styles. The difference between board-feet
in and out would be any scrap that is created
throughout the process.

Linear-feet in Linear-feet in is simply the total length of the incoming
lumber.
Linear-feet out Linear-feet out is the total length of the lumber after it

has gone through the manufacturing process. The
difference between linear feet in and linear feet out is
any scrap created in the process.

Pieces in Total number of pieces of incoming lumber.
Pieces out Total number of pieces after manufacturing.
Shift Hours Weekly hours worked by manufacturing employees.
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Production Variable Description

Run Hours Weekly machine run time.
Man Hours Weekly hours worked by all employees.

At first inspection, it is clear that all these variables are very closely related to each other. The employee
hours data should increase if the production data increases and vice versa. When creating an energy
model, the goal is to create the simplest model that best represents the energy usage at the facility. So,
while the facility provided many variables for consideration, not all the variables are needed. Step one
is determining whether any of the variables correlate to their energy use or to each other. Looking at the
correlations of all the variables, it is clear that all nine variables provided are strongly correlated with
one another.

Table 6. Correlation Matrix of Predictor Variables

4 Correlations

Weekly kWh BF_IN  BF_OUT LF_IN  LF_QOUT PCS_IN PCS_OUTSHIFT_HRS RUN_HRS MAN_HRS
Weekly KWh 1.0000 0.3910 0.8905 0.8562 0.3402 0.8657 0.8401 0.9162 0.9219 0.3769

BF_IN 0.8810 1.0000 0.9995 0.9560 0.9749 0.9452 0.96482 0.9674 0.9745 0.9514
BF_OUT 0.8805 0.9995 1.0000 0.9532 0.9756 0.9421 0.9691 0.9660 0.9742 0.9433
LF_IM 0.8562 0.9560 0.9532 1.0000 0.9444 0.9889 09274 0.9397 0.9257 0.9508
LF_ouUT 0.8402 0.9749 0.9756 0.9444 1.0000 0.9299 0.9919 0.9424 0.9455 0.9238
PCS_IN 0.8657 0.9452 0.9421 0.95339 0.9299 1.0000 0.9268 0.9454 0.9260 0.9533
PC5_0UT 0.8401 09682 0.9691 0.9274 0.9919 0.9268 1.0000 0.9411 0.9419 0.9286
SHIFT_HRS 0.9162 09674 0.9660 0.9397 0.9424 0.9454 0.9411 1.0000 0.9830 0.9615
RUN_HRS= 0.9219 0.9745 0.9742 0.9257 0.9455 0.9260 0.9419 0.9820 1.0000 0.9345
MAMN_HRS 0.8769 0.9514 0.9483 0.9508 0.9238 0.9533 0.9226 0.9615 0.9345 1.0000

The scatter-plot matrix also shows these connections graphically:
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Figure 7. Scatter Diagram Matrix

If a model was created using all of these variables, multicollinearity would cause the coefficients and T-
statistics to be highly unstable. The resulting parameter estimates are as follows:
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Table 7. Regression Output with VIF for Nine Variables

4 Summary of Fit

RSguare 0871156
RSguare Adj 0863214
Root Mean Square Errar a479.522
Mean of HRespaonse 116756.4
Observations (or Sum Wats) 156

£ Parameter Estimates

Term Estimate S5td Error tRatio Prob>|t| VIF
Intercept A7T620.897 2190133 2631 =0001% )
BF_IM 0134806 013044  -1.03 03027 1138.6942
BF_OUT 01721604 0133898 129 02006 1,086.994
LF_IM -0.005031 0015706 -0.32 07492 18122169
LF_ouT -0.023185 0.022647 -1.02 023076 214.35951
PCS_IMN 0.05078 0071873 071 04810 13410303
PCS_OUT -0.02483 0099287 -025 08028 175816348

SHIFT_HRS  34.450341 4073616 0.84 03997 56831032
RUMN_HRS 20645437 5513963 74 0.0003* 52702841
MAMN_HRS 71132677 7.78307 091 03623 22069063

Drawing any conclusions from any one of these parameters in isolation would be erroneous because of
multicollinearity. For instance, it appears from this regression that there is a negative relationship
between linear feet in and electricity use. This is obviously not true (as can be seen in the scatter-plot
matrix). What the regression actually is saying is that when linear feet is high compared to what would
be expected for a given combination of the other variables, electricity use will be low compared to what
would be otherwise be expected for that combination.

Because of the multicollinearity issue, the choice of variables was performed using a combination of
judgment from the modeler and stepwise regression. First, all the “in” variables were rejected from the
analysis, since manufacturing output is typically a more direct driver of energy consumption. Next, the
“hours” variables were rejected because of the logistical implications of using employee hours in an
energy model. Energy models should be tied to physical production whenever possible, so that process
improvements that may use fewer or consistent employee hours but produce more would show up as
energy savings. Finally, stepwise was used to determine the “most correlated” production output
variable. From stepwise, it was apparent that adding additional production variables after the first really
didn’t help the regression substantially, as seen below:
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£+ Stepwise Fit for Weekly kWh
4 Stepwise Regression Control
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4 Step History
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3 PCS_OUT Entered 03018 1.086e+3 0.8113 4
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332346 33354
33245 333035 @
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Figure 8. Stepwise Regression Output

Besides not explaining much additional variation, the addition of more variables (LF_Out and PCS_Out)
after the first (BF_Out) creates counter-intuitive parameter estimates. While LF_Out was statistically
significant (p=0.0003), on average the inclusion of this variable won’t appreciably improve the accuracy
of the predicted values from the model. The exception would arise if the model were consistently
applied at the high or low end of the observed range of LF_Out, in which case the additional resolution
provided by the inclusion of the variable might be important.

The modeling process started with nine possible production variables. Because of multicollinearity, a
model specification that includes all the potential predictor variables results in individual coefficients
that have poor p-values and don’t make a lot of intuitive sense. A more meaningful model can be
obtained by using stepwise regression, combined with knowledge of the process, to identify an initial set
of primary energy drivers, and selectively adding variables to see how much the addition of other
variables helps (or doesn’t help) improve the model’s fitness.
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4 Regression Plot
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A Analysis of Variance
Sum of
Source DF Squares Mean Square F Ratio
Model 1 6.4607e+10 G.461e+10 5887731
Error 154 1.687e+10 109544711 Prob=>F
C. Total 155 8.1476e+10 =.0001*
4 Parameter Estimates
Term Estimate Std Error tRatio Prob>|t| VIF
Intercept G0188.316 2475467 2431 =0001* .
BF_OUT 0121738 0005013 2429 =0001* 1

Figure 9. Regression Output for Single-Variable Model

The final model outlined above could be further studied to see if weather variables or other non-
correlated production variable could improve the amount of variation explained by the model.
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Summary and Conclusions

Multicollinearity is a problem that often confronts program implementers in their efforts to select the
appropriate predictor variables for regression-based energy models.  While the presence of
multicollinear variables has limited influence on the predictive capability of the final model, SEM
practitioners should be mindful of the implications of multicollinearity on the ability to draw
conclusions based on a cursory interpretation of the model coefficients.

The examples in the paper present methods of diagnosing and addressing multicollinearity. Diagnostics
can include a simple matrix of correlation coefficients, but the variance inflation factor provides the
most reliable method of testing for the presence of multicollinearity. In the context of top-down,
regression-based energy modeling, the common solution involves dropping one of the offending
variables from the regression analysis. However, this approach may induce omitted variable bias, which
may negatively affect the predictive capability of the model. In practice, the model developer must
interpret these statistical indicators with an informed understanding of how the process uses energy,
while considering factors such as data availability and model complexity.
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