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Tools and Methods for Addressing Multicollinearity in Energy Modeling 

 
The NW Industrial Strategic Energy Management (SEM) Collaborative was formed in 2012 by the Bonneville 
Power Administration (BPA), Energy Trust of Oregon (ETO), and the Northwest Energy Efficiency Alliance 
(NEEA) for the purpose of identifying and addressing market barriers to SEM adoption in the industrial sector. 
Three teams were subsequently formed to focus on: 1) Small-to-Medium Industrial Solutions, 2) Market Analysis 
and Planning, and 3) Energy Tracking and Savings Protocols (ETSP).  
 
The members of the ETSP team include representatives from BPA, ETO, NEEA, Idaho Power, U.S. Department of 
Energy, the Consortium for Energy Efficiency, Puget Sound Energy, BC Hydro, and the Northwest Food 
Processors Association.  This paper is the initial work product of the ETSP team, which was tasked with the 
identification of consistent and defensible methodologies for measuring and verifying SEM energy savings.  The 
examples in this paper were drawn from recent modeling efforts in BPA’s Energy Smart Industrial and the 
Energy Trust of Oregon’s Production Efficiency programs. 

Introduction 
After reviewing SEM measurement and verification (M&V) protocols from different programs, the 
ETSP team identified multicollinearity as a common statistical issue in industrial data sets.  
Understanding that multicollinearity has the potential to affect the specification of regression-based 
energy models used to determine adjusted baselines, more consistent treatment of this issue may help 
improve confidence in SEM-based savings, and thereby address a potential market barrier.  Therefore, 
the team compiled this paper for the purposes of outlining the implications of multicollinearity in the 
context of SEM measurement and verification, and providing examples of how program implementers 
have successfully identified and treated the presence of multicollinearity among a set of predictor 
variables. 

Statistical Definition 
Multicollinearity is present when two or more predictor variables in a regression model are correlated 
among themselves.  When two independent variables tend to move together through time, including both 
variables  may not add appreciably to the explanatory power of the model, compared to just having one 
or the other in the model.  Essentially, the additional variable has little new information to provide.  
While perfect multicollinearity involves two variables that are linear translations of each other (R2=1), 
partial-multicollinearity is more commonly observed in the context of regression-based energy models.     
 
In the practice of developing predictive energy models, multicollinearity typically arises from one of the 
following: 
 

1. There are two or more observed factors that each drive energy consumption and that trend 
together in fairly consistent ways.   

2. There’s an observed factor or factors that drive energy consumption, and these drivers also drive 
other observed variables.  

3. There’s an unobserved factor that drives energy and some other observed factors.  Then the 
observed factors are all proxies for the true drivers, and the modeler is faced with developing the 
best possible predictive model from the available data. 
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Implication for Model Results 
When multicollinearity is present, the coefficient of any one independent variable depends on which of 
the other correlated variables are included in the model.  The ordinary least squares (OLS) results may 
indicate a good overall fit to the sample data in terms of R2 and overall predictive capability.  However, 
including or excluding other independent variables or using a different sample (or base period) may lead 
to large changes in the estimated coefficients when multicollinearity exists. Hence, the coefficients must 
be interpreted given the other explanatory variables in the model.  The reliability of the coefficients will 
be reflected appropriately in the OLS-based standard errors.   
 
The presence of correlated variables should serve as a warning that the statistical significance of a 
variable in a particular regression does not by itself indicate how closely that variable is correlated with 
energy consumption.  Therefore, when faced with multicollinear variables, the modeler should exercise 
caution in excluding any variables that might actually be significant drivers of energy use. 
 

Example #1:  Municipal Wastewater Treatment Facility 
Approximately 3-4% of the electricity consumed in the U.S. is used for the treatment, conveyance, and 
disposal of water and wastewater.  The vast majority of electric utilities have a wastewater treatment 
(WWT) facility within their service areas, and there is a growing awareness of the benefits of SEM 
among WWT professionals.  In the practice of establishing meter-level, regression-based energy models 
for wastewater treatment facilities, SEM practitioners are often confronted with two or more variables 
that exhibit varying degrees of multicollinearity.  While plant influent is likely a primary energy driver, 
a range of other factors may affect the energy use within the facility.  Some of these are physically 
related to the influent flow.   
 
This example provides a short case study in the treatment of multicollinearity in a wastewater treatment 
facility.  The program participant is a municipal operator of a 10-40 million gallon per day (MGD) open-
system treatment facility in the Pacific Northwest.  Figure 1 provides an illustration of the main process 
steps in the plant’s operations.  The electrical energy measurement boundary was defined by the utility’s 
revenue meter, which covered both the water treatment and solids handling systems.  
 

 
Figure 1.  Process Flow Illustration 
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Review of Hypothesis Variables 
Equipped with an informed understanding of the process steps and electrical loads, the model developer 
begins by establishing a set of hypothesis predictor variables.  Table 1 provides a summary of the 
variables selected at the outset of this effort, with a brief explanation of each variable’s association with 
energy use and the potential mechanisms for multicollinearity with other variables. 
 

Table 1.  Common Energy-Driver Variables in WWT Facilities 

Variable Association with Energy Potential for Collinearity 

Influent  
(untreated wastewater 
into plant) 

Key driver of system load in most 
process steps, particularly the energy-
intensive secondary treatment step. 

Typically, plant influent will always be 
included, and thereby becomes the 
reference variable for assessing 
multicollinearity. 

Effluent (treated, clean 
water leaving plant) Also closely associated with plant load. 

Effluent volume is typically closely 
associated with influent, but offset by 
the lead time of the treatment process. 

Solids Processed  Indicative of the load on the solids-
handling portion of the plant. 

If the plant is run continuously, seven 
days per week, this parameter may be 
strongly correlated with influent. 
 

Precipitation 

In an open system that collects storm 
water, higher precipitation leads to more 
influent, with a lower concentration of 
solids and biological oxygen demand. 
 

Influent and precipitation typically follow 
similar trends, depending on the system 
design. 

Ambient Temperature 
The solubility of oxygen in water varies 
with temperature, which impacts 
aeration load. 

Ambient temperature and precipitation 
may be loosely correlated. 

 
Before assessing multicollinearity, the model developer may perform a regression that includes all the 
hypothesis variables, for the purpose of gaining a cursory assessment of the relative statistical 
significance each variable.  Table 2 shows the regression output for the five variables outlined in the 
preceding table.   
 

Table 2.  Regression Results When all Five Predictor Variables are Included 

 
 

A commonly-applied rule of thumb would guide the modeler to carefully consider the statistical 
significance of variables with absolute value T-statistics of less than 2.0.  For example, the IPMVP 
references a T-statistic of greater than 2.0 as providing a reasonable degree of confidence of a variable’s 
impact on energy use.  On this basis, effluent and ambient temperature should not be treated as 
statistically significant variables, while the other four variables should be retained for further analysis.  
However, the T-statistic for effluent indicates moderate statistical significance, and the model developer 
can’t dismiss the possibility that its impact on energy is understated due to the inability of the regression 
analysis to empirically separate the effect of influent volume from the effect of effluent volume over the 



- 4 -                                                               

observed range of conditions.  A basic examination of the scatter diagrams between these two variables 
and energy use, shown in Figures 2 and 3, leads to one of the following three conclusions:   
 

 Influent and effluent are both significant drivers of energy use, 
 Influent is a driver of both energy and effluent, resulting in a strong correlation between effluent 

and energy (or the reverse), 
 Influent, effluent, and energy are all driven by some other factor, resulting in correlation among 

the three variables.  Identifying the true “driver” may require a more detailed understanding of 
the mechanism at play. 

 

 
Figure 2.  Influent versus Energy Use 

 
Figure 3.  Effluent versus Energy Use 

  
In the practice of multivariable regression, a general assessment for multicollinearity can be performed 
by regressing each predictor variable against the other hypothesis variables, and examining the 
coefficient of determination (R2) of each relationship.  As a rule of thumb, any bivariate correlation with 
R2>0.7 is an indication that multicollinearity needs to be carefully considered in the variable selection 
process.  The generation of a matrix of x-y scatter diagram, as shown in Figure 4, can provide a 
reasonable assessment of correlation among two variables.  However, it must be recognized that 
multicollinearity is a multivariate problem, and while a simple matrix of correlation coefficients and 
scatter diagrams can identify two independent variables that are highly correlated, this exercise has 
limited ability to detect an independent variable that is highly correlated to a combination of predictor 
variables.  A more complete assessment regresses each independent variable on all of the others.  
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Figure 4.  Scatter Diagram Matrix 
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Casual inspection of the scatter plots confirms the presence of collinearity between the influent and 
effluent variables, which is validated by their respective coefficient of determination (R2=0.87).  As one 
might expect, influent and precipitation exhibit a modest degree of correlation, but the R2 of 0.43 
doesn’t violate common statistical guidelines.    
 
Variance Inflation Factor 
At this point, the model developer may decide to further examine the severity of multicollinearity using 
the Variance Inflation Factor (VIF).  While this exercise isn’t normally required in the development of 
energy models, it may provide additional insight when one encounters counterintuitive results from a 
regression output (e.g. beta coefficient signs or magnitudes, low t-stats).  The VIF provides a reliable 
index of how much the variance of an estimated regression coefficient is increased because of the 
collinearity, when compared to having uncorrelated predictors.  The VIF is useful because it provides an 
indication of the inter-correlation effects among all the variables, not just two at a time. 
 
Equation 1 provides a useful formula for calculating VIFs for multiple predictor variables: 
 

൯ܨܫ൫ܸ	ݎݐܿܽܨ	݊݅ݐ݈݂ܽ݊ܫ	݈ܾ݁ܽ݅ݎܸܽ		:ሺ1ሻ	݊݅ݐܽݑݍܧ ൌ 	
ܵ
ଶሺ݊ െ 1ሻܵܧ

ଶ

௦ௗ௨௦ܧܵܯ
 

 
The following table shows the standard Excel regression output, with an additional column for each 
variable’s standard deviation, along with the VIF calculated by Equation (1).  Note that the temperature 
variable was determined to be statistically insignificant, and was removed from the set of hypothesis 
variables.  Variance Inflation Factor values range from one, indicating that a variable isn’t correlated 
with any other predictors, to infinity, for near perfect correlation in which there exists no unique solution 
for the regression coefficient.  As a rule of thumb, if any of the VIF values is greater than five, the 
modeler should consider taking steps to address multicollinearity. 
 

Table 3.  Regression Output with VIF for Five Variables 
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To put the Variance Inflation Factor figure in context with other regression statistics, the VIF of 9.59 for 
influent indicates that the standard error term associated with its beta coefficient is approximately three 
times as large as is would be if it were uncorrelated with other predictor variables ሺ√9.59 ൌ 3.1ሻ.  In 
this case, the model developer considered the implications of eliminating either the influent or effluent 
variable from the model specification.   
 
Stepwise Regression and Model Specification 
A typical approach in this decision process involves performing the regression with and without each 
variable.  For illustrative purposes, Table 4 shows the results of a stepwise regression process, beginning 
with precipitation as the single variable. 
 

Table 4.  Stepwise Regression Summary 

 
 
A comparison of the model fitness statistics, coefficient of determination (R2), and the coefficient of 
variation (CV-RSME), shows incremental improvement in model resolution provided by each variable.  
A comparison of trials demonstrates that retaining influent as the construct of plant load (Trial ④) 
provides a higher level of model resolution versus the alternative option of retaining the effluent variable 
(Trial ③).     
 
Trial ⑤ captures the original hypothesis model, without ambient temperature.  While the presence of 
multicollinearity didn’t affect the predictive capability of the model, including both variables in the 
model produces a beta coefficient for effluent that can’t be interpreted as an accurate representation of 
effluent’s independent incremental impact on plant energy use.  Thus, one can observe instability in the 
beta results for effluent among different trials (Trial ⑤ versus ③, and Trial ⑤ versus ⑥).  If an 
accurate characterization of a variable’s independent influence on energy use is a desired outcome of the 
regression exercise, then this phenomenon should be recognized.  Also, the presence of multicollinearity 
in Trial ⑤ may have led the modeler to exclude the effluent variable due to the marginally significant 
T-statistic, without further consideration.  While that decision would have led to the same outcome in 
this example, in other instances it could result in the erroneous exclusion of a significant predictor 
variable, resulting in omitted variable bias. 
 
The final model specification for this waste treatment facility, as outlined in Trial ④, is given by 
Equation (2): 
 

	݁ݏܷ	ݕ݃ݎ݁݊ܧ		:ሺ2ሻ	݊݅ݐܽݑݍܧ
ܹ݄݇
ݕܽ݀

ൌ 40,533  610.2	ሺݐ݊݁ݑ݈݂݊ܫሻ  0.059	ሺܵݏ݈݀݅ሻ െ 2,615	ሺܲ݊݅ݐܽݐ݅݅ܿ݁ݎሻ 
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This model meets the basic criteria of the program administrator’s SEM M&V guidelines.  Figures 5 and 
6 illustrate the strong agreement between actual and predicated energy consumption values across the 
observed range of energy consumption, and the unbiased nature of the model error (residuals) over the 
baseline period. 
 

Figure 5.  Actual versus Predicted Energy Use (Trial 4) 

 

 
Figure 6.  Time Series of Residuals (Trial 4) 

 

Example #2 – Wood Products Company 
 
When trying to identify important energy drivers, a company often provides many different production 
variables to add into the model.  Many times, these variables are correlated to each other because all 
production tends to trend together.  Depending how closely related to each other the variables are, a 
modeler much decide if multicollinearity in the model is causing an unstable model or if all variables are 
necessary to use to describe energy use at the site.  One example of this is a wood products company 
that creates wood pieces of varying lengths.  When providing the production energy driver data, the 
facility provided the following variables: 

 
Table 5.  Production Variables Provided by Plant 

Production Variable Description 
Board-feet in Board feet is the thickness of the board width times the 

length.  This variable represents the incoming lumber 
into the plant. 

Board-feet out Total board-feet out is measured after the plant 
converts the incoming lumber into pieces of varying 
lengths and styles.  The difference between board-feet 
in and out would be any scrap that is created 
throughout the process. 

Linear-feet in Linear-feet in is simply the total length of the incoming 
lumber.   

Linear-feet out Linear-feet out is the total length of the lumber after it 
has gone through the manufacturing process.  The 
difference between linear feet in and linear feet out is 
any scrap created in the process. 

Pieces in Total number of pieces of incoming lumber. 
Pieces out Total number of pieces after manufacturing. 
Shift Hours Weekly hours worked by manufacturing employees. 
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Production Variable Description 
Run Hours Weekly machine run time. 
Man Hours Weekly hours worked by all employees. 

  
At first inspection, it is clear that all these variables are very closely related to each other.  The employee 
hours data should increase if the production data increases and vice versa.  When creating an energy 
model, the goal is to create the simplest model that best represents the energy usage at the facility.  So, 
while the facility provided many variables for consideration, not all the variables are needed.  Step one 
is determining whether any of the variables correlate to their energy use or to each other.  Looking at the 
correlations of all the variables, it is clear that all nine variables provided are strongly correlated with 
one another. 
 

Table 6.  Correlation Matrix of Predictor Variables 

 
 
The scatter-plot matrix also shows these connections graphically: 
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Figure 7.  Scatter Diagram Matrix 

 
If a model was created using all of these variables, multicollinearity would cause the coefficients and T-
statistics to be highly unstable.  The resulting parameter estimates are as follows: 
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Table 7.  Regression Output with VIF for Nine Variables 

 

 
 
Drawing any conclusions from any one of these parameters in isolation would be erroneous because of 
multicollinearity.  For instance, it appears from this regression that there is a negative relationship 
between linear feet in and electricity use.  This is obviously not true (as can be seen in the scatter-plot 
matrix).  What the regression actually is saying is that when linear feet is high compared to what would 
be expected for a given combination of the other variables, electricity use will be low compared to what 
would be otherwise be expected for that combination.  
 
Because of the multicollinearity issue, the choice of variables was performed using a combination of 
judgment from the modeler and stepwise regression.  First, all the “in” variables were rejected from the 
analysis, since manufacturing output is typically a more direct driver of energy consumption.  Next, the 
“hours” variables were rejected because of the logistical implications of using employee hours in an 
energy model.  Energy models should be tied to physical production whenever possible, so that process 
improvements that may use fewer or consistent employee hours but produce more would show up as 
energy savings.  Finally, stepwise was used to determine the “most correlated” production output 
variable.  From stepwise, it was apparent that adding additional production variables after the first really 
didn’t help the regression substantially, as seen below: 
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Figure 8.  Stepwise Regression Output 

 
Besides not explaining much additional variation, the addition of more variables (LF_Out and PCS_Out) 
after the first (BF_Out) creates counter-intuitive parameter estimates.  While LF_Out was statistically 
significant (p=0.0003), on average the inclusion of this variable won’t appreciably improve the accuracy 
of the predicted values from the model.  The exception would arise if the model were consistently 
applied at the high or low end of the observed range of LF_Out, in which case the additional resolution 
provided by the inclusion of the variable might be important. 
 
The modeling process started with nine possible production variables.  Because of multicollinearity, a 
model specification that includes all the potential predictor variables results in individual coefficients 
that have poor p-values and don’t make a lot of intuitive sense.  A more meaningful model can be 
obtained by using stepwise regression, combined with knowledge of the process, to identify an initial set 
of primary energy  drivers, and selectively adding variables to see how much the addition of other 
variables helps (or doesn’t help) improve the model’s fitness. 
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Figure 9.  Regression Output for Single-Variable Model 

 
The final model outlined above could be further studied to see if weather variables or other non-
correlated production variable could improve the amount of variation explained by the model. 
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Summary and Conclusions 
Multicollinearity is a problem that often confronts program implementers in their efforts to select the 
appropriate predictor variables for regression-based energy models.  While the presence of 
multicollinear variables has limited influence on the predictive capability of the final model, SEM 
practitioners should be mindful of the implications of multicollinearity on the ability to draw 
conclusions based on a cursory interpretation of the model coefficients. 
 
The examples in the paper present methods of diagnosing and addressing multicollinearity.  Diagnostics 
can include a simple matrix of correlation coefficients, but the variance inflation factor provides the 
most reliable method of testing for the presence of multicollinearity.  In the context of top-down, 
regression-based energy modeling, the common solution involves dropping one of the offending 
variables from the regression analysis.  However, this approach may induce omitted variable bias, which 
may negatively affect the predictive capability of the model.  In practice, the model developer must 
interpret these statistical indicators with an informed understanding of how the process uses energy, 
while considering factors such as data availability and model complexity. 
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