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Document Objective 

The Monitoring, Targeting and Reporting (MT&R) methodology, in conjunction with a process to track specific 
activities, is used to verify, quantify, and validate energy savings on the Track and Tune (T&T) and High 
Performance Energy Management (HPEM) features of ESI’s Energy Management components.  This document 
outlines recommended methodologies to establish the baseline energy models at a whole-facility or subsystem 
level, and ultimately quantify energy savings associated with the implementation of multiple energy efficiency 
measures (EEMs) over a defined performance period.  Specific focus is given to the methodologies for 
addressing special circumstances such as separating operations and maintenance (O&M) savings from 
concurrent capital projects, and addressing changes in business operations that necessitate adjustments to 
the baseline model. 

In the context of ESI whole-facility or subsystem energy management, the standard approach is a top-down, 
regression model at the meter level, as described by the International Performance Measurement and 

Verification Protocol (IPMVP)1.  Unless otherwise noted, the ESI MT&R Process Outline is intended to align to 
the current best practices outlined by IPMVP for "Option C" models. 

The Energy Performance Tracking (EPT) team is in place to manage and approve the MT&R strategies and 
methodologies that are utilized for HPEM and T&T projects, and will be responsible for the contents of this 
document.  

                                                           

1 International Performance Measurement and Verification Protocol.  Efficiency Evaluation Organization.  10000-1.2012.  
www.evo-world.org 
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1. Characterization of the Facility or Process 

1.1 Identify Measurement Boundary 

 In the application of whole-facility energy models, the measurement boundary consists of 
all the systems and processes served by one or more utility meters.  While energy sources 
may include natural gas, steam, or compressed air, the examples in this document 
assume electrical energy as the targeted response variable. 

 Care must be taken to ensure that: 
o All electrical energy crossing the measurement boundary has been documented 

and accounted for. Documentation may include one-line electrical drawings, 
energy maps, and system schematics which identify equipment and processes 
within the measurement boundary.   

o Significant electrical energy-consuming equipment within the measurement 
boundary which is inconsistently used in other areas of the plant is documented 
and accounted for. An example would be an air compressor within the 
measurement boundary that supplies variable amounts of compressed air to 
both the measurement boundary and other areas throughout the plant. Effective 
sub-metering strategies need to be deployed to measure the energy usage 
crossing the measurement boundary for reporting purposes. 

o If other energy sources are used to offset electrical energy use within the 
measurement boundary, then effective sub-metering strategies must be 
deployed to measure the changing energy usages for reporting purposes. One 
such an example would be a drying process that can be done with a fan, a 
steam heater, or a combination of both.  
 

 

Figure 1. Illustration of measurement boundary, including where product, energy, steam and compressed air cross the 
measurement boundary. 
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1.2 Identify Production Energy Drivers - Hypothesis Stage 

 Through conversations with the site’s energy champion, and/or application of the Energy 
Mapping and MT&R Data Collection sheet, develop an energy map which organizes the 
major electrical loads within the facility or system boundary relative to process flow.   

 The primary energy driver is typically production.  At this stage, it is important to 
understand how many product types are manufactured in the facility, and whether there 
is likely to be a difference in energy intensity based on lead time, process flow, batch size, 
etc.  Raw material, work in progress, and finished product metrics each has merits and 
demerits for selection as the primary energy driver variable.  An informed decision will 
take in to account factors such as lead time, the desire to account for yield effects, and 
the prevalence of inventory fluctuations in-process or at the finished product stage. 

Table 1. Consideration for Selection of Production Variable 

MEASUREMENT GATE MERIT DEMERIT 

Raw material input 
Provides a mechanism to 
capture the effects of 
different raw material types. 

Will not produce a signal for 
energy impact of yield or 
productivity improvements. 

Work in progress 

Allows selection of production 
variable at energy-intensive 
process, thereby minimizing 
time series shift. 

Availability of data fails to 
provide mechanism for 
incentivizing energy impact of 
yield/productivity 
improvement downstream 
from point of measurement. 

End of line metric 

Provides mechanism for 
incentivizing energy impact of 
yield/productivity 
improvements. 

May induce a time-series shift 
for long lead-time processes. 

Finished product shipped Data can be captured from 
accounting systems. 

May not correspond with 
production if finished product 
inventory fluctuates. 

 

 Assess where production data is available, relative to the energy-intensive process steps.  
If a significant offset exists between the energy-intensive process step and the production 
measurement gate, compensating time-series shift may be applied that corresponds to 
the magnitude of the time offset (see Section 2.3). 

 Process flow diagrams, piping and instrumentation diagrams, and value stream maps can 
be helpful at this stage. 

 Consider dialoguing with key contractors or trade allies if the end user relies on them for 
operations or other influential activities. 

1.3 Identify Other Energy Drivers - Hypothesis Stage 

 Based on the mechanical system inventory and process characteristics, form a 
hypothesis of other energy drivers.  The most common example is ambient conditions 
(dry-bulb and wet-bulb temperatures), but could include variables such as raw material 
properties, operational modes (weekend/weekday), occupancy, etc. 

 Energy drivers must be tested for statistical significance. A suitable explanation must be 
provided when an energy driver(s) is used in the model, but the energy driver(s) was not 
found to be statistically significant.  

 Ambient temperature (wet bulb or dry bulb) should generally be tested for statistical 
significance, although in many industrial settings it may not be a primary driver of energy 
intensity.      
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 In the process of variable selection, the model developer will face competing objectives of 
capturing the full subset of statistically significant variables, while aiming to provide the 
customer with a model that is simple and easy to maintain.  No single analytical 
technique will provide the perfect solution, so the modeler must rely on his or her 
experience and engineering judgment. 

 Including process parameter variables in the energy model has the potential to add to the 
explanatory power of the model, but limits the ability to achieve savings by including the 
variable in the model. For instance, if a process variable such as “Variable A” is included 
in the model, and a key energy efficiency measure is to reduce Variable A, then reducing 
Variable A is likely to result in no energy savings because this variable is in the model. 
While sometimes necessary for model fitness, including variables that can be influenced 
in the energy model is not a preferred option.   

 

Figure 2. Energy use tracks closely with the number of average rooms in holding. Average rooms in 
holding could be influenced through energy efficiency measures. 

1.3.1 Weather Data 

 Acceptable sources of weather data include local airport weather stations, the National 
Climate Data Center (NCDC) database, or the Washington State University Agricultural 
Weather Network.  A change in the weather data source during the treatment period 
should trigger an update to the original model, followed by EPT review. 

1.4 Identify Utility Meters or Submeters 

 Document which processes are served by specific meters.  This step will be important in 
determining whether to create a single model for a facility or to create discrete models for 
functional units that collectively represent the entire facility’s energy use.  

 Meter serial number, utility account number, or other unique identifier should be 
recorded in the baseline report. 

 If an end user-owned submeter will be used in place of the utility meter, the submeter 
data should be appropriately aggregated and compared to a utility bill.  If the submetered 
measurement boundary does not align to a utility meter, then the submeter calibration 
should be confirmed by a certified electrician.  The electrician shall strive to use no less 
than third order NIST-traceable calibration equipment, as recommended by ASHRAE 
Guide 14-2002, Section 7.5. 
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2.  The Baseline Data Set and Hypothesis Model 

2.1 Determining the Baseline Period 

 In principle, the baseline period should encompass the cycles and ranges of the 
hypothesized primary and secondary energy drivers, and should extend as close to the 
start of the treatment period as possible.  Ideally, the baseline period should capture two 
or more cycles of operation. 

 The minimum standard for the number of baseline data points is: (min data points = 6 · 
number of coefficients in the model).  If the data set falls below this guideline, the model 
will likely be “over-fitted,” and the model’s comparative performance will likely deteriorate 
during the treatment period.  Since the number of coefficients is not known at this point, 
it can be assumed that there will be one coefficient for each hypothesized variable, plus 
the intercept. 

 Models that are weather dependent should use complete years (12, 24, or 36 months) of 
continuous data during the baseline period, to ensure balanced representation of all 
operating modes.  Models that use other intervals of baseline data can create statistical 
bias by under- or over-representing normal modes of operation.2 

 Daily or weekly time interval data typically provide better insight into the process being 
modeled, and thus more accurate models are typically created when compared to data of 
longer durations such as monthly data.  Process lead time should be considered in 
selecting the modeling interval, both for determining the modeling interval, and applying 
time-series offsets with the corresponding energy data. 

 The NW Strategic Energy Management Collaborative white paper provides additional 
guidance and case studies on the selection of an appropriate baseline period, and the 
treatment of non-production periods in a daily model3.    

 2.1.1 Addressing Incentivized or non-Incentivized Energy Projects 

 Utility records should be reviewed to confirm whether incentivized energy projects 
occurred within the measurement boundary during the proposed baseline period.  If so, 
project records should be obtained to accurately capture implementation dates and 
magnitude of verified savings. 

o In determining the effective date for an incentivized EEM, apply the earlier of the 
project M&V start date, or the date that an inflection is observed in the energy 
data (see Appendix A). 

 Interviews should be conducted to determine if other non-incentivized energy projects 
occurred during the proposed baseline period.    

 If either case is identified, one of the options in Appendix A can be applied to guard 
against double-counting of savings. 

 2.2 Collecting Data and Correcting for Outliers  

 When collecting data for energy or energy drivers, ensure that accurate records are 
maintained regarding the data source (e.g., end user database, production gate, weather 
station identification). 

 Perform an initial review for outliers by plotting each variable independently in a time 
series format.  Identify and flag erroneous entries.  Missing data points or data entry 
errors should be investigated and corrected by the facility, if possible. 

                                                           

2 International Performance Measurement and Verification Protocol.  Efficiency Evaluation Organization.  10000-1.2012.  
Section 4.8.4. 
3 Common Considerations in Defining Baselines for Industrial Strategic Energy Management Projects.  NW Industrial 
Strategic Energy Management (SEM) Collaborative, 2014. 
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 Outliers can be flagged for review by applying a common rule of thumb for identifying 
data that lie outside the range of four or more standard deviations from zero.4   

Control Limit = mean +/- 4 standard deviations 

 

 

Figure 3. Example of Graphical Methods to Identify Outliers 

 Any outliers that are ultimately removed from the baseline data set should be annotated 
with the assignable cause.  Understanding assignable cause will likely require 
communication with the end user’s energy champion. 

 Correct for missing or extracted outlier data by closing the gap in the data set.  Avoid 
replacing missing or outlier data by calculated interpolation.   

 Data must be examined with a higher level of scrutiny when obtained from industrial 
control systems. Data obtained from control systems is often on an hourly or sub-hourly 
basis. This data frequently has erroneous and null values and anomalous operations and 
the modeler should review the data set for these types of bad data. 
 

o Erroneous values: A value such as “Control System Error” 
o Null values: No data for the given variable and observation 
o Anomalous operations: Values that appear out of range of normal operations. 

   

 Graphing the data can be an effective way to detect erroneous and anomalous data.  As 
shown in Figure 4, power data within the dashed box is considerably lower than power 
above the dashed box for similar machine speeds. The operation of this machine needs 
to be fully understood prior to performing calculations.    

 

                                                           

4 Neter, J., W. Wasserman, Applied Linear Statistical Models, 1974, Irwin Publishers, Homewood, Illinois, p 106. 
 

Energy Use Time Series Chart (Control Limits ±4 std.) 
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Figure 4. Illustration of control system data showing machine power vs. machine speed. 

 Observations that appear to be anomalies should be reviewed with plant personnel to 
better understand the operation of the system.    

 If any data point within the observation is deemed erroneous, null, or anomalous, the 
observation should be removed from the analysis. Documentation should be provided for 
observations removed from the analysis. To account for irregular observations per time 
period when observations are removed from the analysis, a weighted regression can be 
applied as outline in Appendix E.  

2.3 Adjusting for Time-Series Offsets  

 Use time-series plots to identify consistent offsets between the energy use and an 
independent variable.  For example, if the energy-intensive process is two days’ lead time 
from the production measurement point, a two-day time series adjustment may need to 
be applied to the production variable.  However, this approach may be unnecessary if a 
longer model interval is selected (e.g., instead of a daily model, select a weekly model).  
Figure 5 shows an Example of a Time-Series Plot (Energy and Production vs. Time). 
 

 

Figure 5. Example of a Time-Series Plot (Energy and Production vs. Time) 
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 If necessary, apply the time-series offset to the relevant independent variable(s), 
maintaining the original source data in a separate file. 

 At this point, the baseline data set is ready for the regression modeling process. 

2.4 Forming a Hypothesis Model 

Key Point:  The hypothesis model should be driven by an informed understanding of the 
physical characteristics of the process.   

 Use scatter diagrams to confirm whether significant relationships are linear or non-linear 
in nature.  For example, a plant’s energy intensity often becomes progressively more 
efficient at higher production volumes.  This phenomenon implies a non-linear 
relationship, and is illustrated in Figure 6.   

 

Figure 6. Example of a scatter plot (energy vs. production). 

 Facilities that have an ambient-dependent energy profile will often exhibit a “change-
point” characteristic.  The presence of a “change-point” can be determined by plotting an 
independent variable versus a dependent variable, for example ambient temperature 
versus energy.  Modeling a facility that exhibits a change-point with a single linear model 
would introduce unnecessary error.  Instead, this system should be modeled with a 
change-point model, as illustrated in Figure 7.  For additional details on regression 
change-point models, see Section 4 of BPA Regression for M&V:  Regression Guide5. 

                                                           

5 Regression for M&V:  Reference Guide, Version 1.1, May 2012.  Bonneville Power Administration. 
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Figure 7. Example of a 3-parameter cooling change-point model. 

 When two or more independent variables exhibit correlation, multicollinearity is present 
within the model. The presence of collinear variables can affect the precision of individual 
coefficients and can understate the statistical significance of individual predicator 
variables.  

 The modeler should exercise caution when excluding variables that might be significant 
energy drivers as this can bias the model. When multicollinearity is present, the modeler 
should clearly explain the rationale for both the inclusion and exclusion of variables in the 
energy model.    

 Further work has been done to address the effects of multicollinearity in baseline 
regression models by the NW Industrial Strategic Energy Management (SEM) 
Collaborative6.  

3.  The Baseline Model 

3.1 Assessing Statistical Significance of Independent Variables  

 Screening variables for statistical significance is a critical step in the model review 
process, as the inclusion of erroneous variables will introduce error in the model.  
Likewise, the omission of critical energy driver variables will negatively affect the ability of 
the model to accurately characterize variation in energy use.  The following guidelines can 
be used to test for the significance of each independent variable: 
 

o IPMVP EVO 10000-1.2012:  Rule of Thumb: T-statistic > 2.0, or reference t-table   
o SEP:  At least one variable with a p-value < 0.107 

 

                                                           

6 Tools and Methods for Addressing Multicollinearity in Energy Modeling. NW Industrial Strategic Energy Management 
(SEM) Collaborative. 2013. 
7 Superior Energy Performance Measurement and Verification Protocol for Industry.  Written under contract by The Regents 
of the University of California for the United States Department of Energy. Nov. 19, 2012. Section 3.4.5, p. 10. 
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 For the purpose of ESI Energy Management projects, the IPMVP will serve as the official 
guideline. 

 Appendix C shows where these values can be obtained from typical regression output 
tables.   

 Independent variables that do not pass the above test should not be included.  
Exceptions may be permissible in cases where a variable shows moderate statistical 
significance, and is generally understood to impact energy use for the target system.  The 
rationale for such exceptions must be documented. 

3.2 Statistical Criteria for Model Fitness 

 The fitness of the overall model can be judged against several guidelines: 
o International Performance Measurement and Verification Protocol (IPMVP8):  R-

sqr:  >0.75 
o Superior Energy Performance (SEP) M&V Protocol9:  F-test for overall model p-

value<0.1   
o ASHRAE Guideline 14-200210:  R-sqr:  >0.80;  Net Determination Bias (NDB):  

<0.005% 
 For the purpose of ESI Energy Management projects, the IPMVP will serve as the official 

guideline. However, the following parameters shall be reported in the MT&R document for 
the overall model: 

o R-Square, Adjusted R-Square, Coefficient of Variation, Net Determination Bias, 
Auto-correlation coefficient. 

 Appendix C shows where the basic regression parameters can be obtained from typical 
regression output tables.   

 Plot the actual versus predicted values for the dependent variables on a scatter diagram.  
Check to see that the point pattern is narrowly clustered and uniformly distributed along 
the diagonal as illustrated in Figure 8. 

                                                           

8  International Performance Measurement and Verification Protocol.  Efficiency Evaluation Organization.  10000-1.2012.  
www.evo-world.org.  Appendix B, page 95. 
9 The Regents of the University of California, Section 3.4.5, p. 10. 
10 ASHRAE Guideline 14-2002.  Measurement of Energy and Demand Savings.  American Society of Heating, Refrigerating, 
and Air-Conditioning Engineers, Inc.  2002. www.ashrae.org 
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Figure 8. Example of actual vs. predicted scatter plot. 

 Calculate the autocorrelation coefficient (see Appendix D), and plot the model residuals 
over the baseline period.  If autocorrelation is detected, the number of independent data 
points is effectively reduced.  The typical remedy involves increasing the sample size, or 
selecting a different data interval.   

 Typically, regression-based energy models exhibit positive auto-correlation. Positive auto-
correlation occurs when the sign change of the residuals is infrequent. Conversely, 
frequent sign changes in the residual values results in negative auto-correlation. 

 There is not a defined threshold for the autocorrelation coefficient in the model 
development phase.  However, a review of literature finds references to “light 
autocorrelation” for levels in the ρ=0.3 range11.  This becomes a factor in the uncertainty 
analysis, discussed in Section 4.5.1. 
 
An example of autocorrelation in a time series graph is shown in Figure 9. 

                                                           

11 Guidelines for Verifying Existing Building Commissioning Project Savings – Using Interval Data Energy Models:  IPMVP 
Options B and C.  Revision Date:  November 12, 2008.  California Commissioning Collaborative.  Appendix B, Page 70. 
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Figure 9. An example of autocorrelation in a time series graph. 

 The Durbin-Watson test can be used to determine if auto-correlation is statistically 
significant. The Durbin-Watson test statistic, d, ranges from 0-4, where: 

 d = 2, residuals are not correlated 

 d << 2, residuals are positively auto-correlated  

 d>> 2, residuals are negatively auto-correlated    

 The lower and upper bounds for the Durbin-Watson test statistic will be a function of 
sample size, number of predictor variables, and the desired confidence level. 

 The Northwest Industrial Strategic Energy Management (SEM) Collaborative has provided 
a paper pertaining to autocorrelation in regression-based energy models for industrial 
facilities12.       

 Residual plots that may be of value: 
o Residuals versus time (e.g. Figure 9) 
o Residuals versus the independent variables (confirmation of homoscedastic or 

heteroscedastic residuals) 
o Histogram of residuals (supports Net Determination Bias) 

                                                           

12 Tools and Methods for Addressing Autocorrelation in Energy Modeling. NW Industrial Strategic Energy Management 
(SEM) Collaborative. 2013 
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3.3 Modifying the Hypothesis 

 If the statistical tests outlined in 3.1 and 3.2 indicate insufficient fitness of the model, 
modify the model hypothesis. 

 This process might include modifications to the assumed energy drivers, time intervals, or 
the order of relationships (second order, square root, etc.).   

 If the measurement boundary is supplied by multiple meters, disaggregating the meters 
may result in better model resolution. 

 In forming an alternative hypothesis, confirm that the characteristic of the equation 
remains aligned with the mechanics of the process, and that the baseline data set meets 
the standards outlined in Section 2.1. This information should be documented in a 
competing model summary. An example of a competing model summary is provided in 
Appendix G.   

3.4 Screening for Residual Outliers 

 Outliers from the residual analysis should be flagged for review. One approach to 
reviewing outliers is by applying a common rule of thumb for identifying data that lie 
outside the range of +/- 4 standard deviations 13.   

 Before removing outliers, the modeler should review any residuals outside the control 
limits of +/- 4 standard deviations with the Energy Champion to understand the cause of 
the anomaly.  

 The modeler must provide a supporting explanation when removing statistical outliers.  
 

 

Figure 10. Inspection of residual outliers. 

 

                                                           

13 Neter, J., W. Wasserman, Applied Linear Statistical Models, 1974, Irwin Publishers, Homewood, Illinois, p 106. 
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3.5 Alternatives to Baseline Regression Energy Modeling 

The adoption of a methodology that does not use a standard baseline regression energy 
model may be necessary under certain conditions.   

3.5.1 Backcast Approach 

For the Backcast approach, the regression energy model is developed from the data obtained 
during the treatment period. This method is applicable in instances where: 

1) One or more independent variables has significantly increased or decreased from the 
baseline period through the savings period. 

2) The resolution of the energy signature for the original baseline was relatively poor and the 
resolution of the energy signature during the treatment period has significantly improved.  

For more details, reference Superior Energy Performance Measurement and Verification 
Protocol for Industry14 . 

3.5.2 Mean Model  

The Mean Model approach may be necessary when: 

1) There is insufficient variation in the independent energy drivers (e.g., production is 
constant) such that there is also insufficient variation in the corresponding energy 
variable. 

2) There is insufficient correlation between suspected energy drivers and energy. 

For the Mean Model approach, the estimate of baseline energy use is the average energy use.  

Baseline Energy per interval = Average Annual Energy Consumption for baseline 
period. 

This approach requires that baseline operating conditions be thoroughly documented, so that 
changes in energy intensity observed during the treatment period can be properly assigned to 
EEMs directed at energy efficiency versus other changes in plant operation. 

This approach is valid given that: 

 The independent variable and relevant operational parameters remain within a defined 
range.  An acceptable guideline for this tolerance is ± 3σ of values recorded in the 
baseline period15.   

 

3.6 The MT&R Baseline Report and EPT Review 

 The baseline model and supporting statistics and graphics should be documented in the 
MT&R baseline report.  The Energy Performance Tracking (EPT) team will provide final sign-off, 
after a review by the utility and end user.  

                                                           

14 The Regents of the University of California, Section 3.4.12, p.12 
15 The Regents of the University of California, Section 3.4.6, p.11 
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4.   Treatment Period – Calculation of Savings 

4.1 Maintaining Records of Events and Changes 

The savings calculated in Sections 4.3 and 4.4 represent the total (gross) energy savings for the site.  
In order to establish attribution, it is critical that the energy champion maintain accurate records of 
key O&M actions or behavior-based improvements.  The energy champion should attempt to correlate 
inflections in the cumulative sum of differences (CUSUM) graph to these actions or changes. 

Any effects from fuel switching must be accounted for and excluded from the gross MT&R savings. If 
fuel switching is a possibility, it is advisable to maintain records of other alternate fuel sources 
crossing the measurement boundary, beginning with the baseline period. These records can be used 
to show that fuel switching did not occur during the treatment period.   

4.2 Adjusting for Concurrent Incentivized Projects  

If the end user is participating in other ESI components, there will likely be a need to adjust the MT&R 
savings to net out the site savings from EEMs incentivized by other components.  The typical approach 
is an adjustment to the gross savings by the utility-approved M&V savings value associated with the 
project, prorated from the in-service date to the end of the treatment period. 

Appendix B outlines the options for determining the value of the adjustment and identifying a suitable 
date of application.   

4.3 Calculation of Savings Using Regression Model 

 As data is collected during the treatment period, it should be methodically reviewed to 
detect anomalous values and to ensure that the independent variable data fall within the 
range used to establish the baseline model.  Section 5.0 outlines the methodology for 
rebaselining, if such action is necessitated by a dramatic increase or decrease in 
production. 

 Net Energy Savings can be calculated by applying the following equation: 
 

Energy Savings = (Predicted Energy Use from Baseline Model –                      
Actual Energy Use) ± Adjustments 

 The CUSUM calculation is an effective means of quantifying the total energy savings 
benefit.  In graphical form, the CUSUM provides a powerful illustration of the total savings 
achieved during a specified treatment period.  However, the CUSUM graph should be 
used in conjunction with a time series plot of energy and the independent variables.  
Together, these graphs help establish an informed understanding of energy intensity 
inflections. 
 
An example of a CUSUM graph is shown in Figure 11. 
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Figure 11. CUSUM graph example. 

4.4 Calculation of Savings Using Alternative Approaches 

4.4.1 Savings Calculation by Backcast Approach 

When using the Backcast approach, the baseline model is developed with data from the 
treatment period. The baseline energy use is then estimated from the data obtained during 
the baseline period.  The energy savings are then calculated as:  

Energy Savings = (Actual Energy Use - Predicted Energy Use from Baseline 
Model) ± Adjustments 

Note that, as the name would imply, the energy savings calculation is the reverse of the 
standard regression approach.  

4.4.2 Savings Calculation by Mean Model 

For a mean model, baseline energy is calculated as the mean or average energy use during 
the baseline period. For a given time interval, energy savings are then calculated as the 
difference between the mean value from the baseline period and the actual energy use for 
that time interval, plus or minus any adjustments.   

Energy	Savings ൌ MeanሺActual	Energy	Useሻ୆ୟୱୣ୪୧୬ୣ െ ሺActual	Energy	Useሻ୘୰ୣୟ୲୫ୣ୬୲ 	
േ 	Adjustments 
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4.4.3 Savings Calculation by Bottom-up Approach 

Quantification of energy savings using the bottom-up approach consists of engineering 
calculations supported by short-term data logging. The application of this approach is limited 
to the Small Industrial High Performance Energy Management (SI HPEM) component16.  
Further information regarding the application of engineering calculations including, 
determination of the baseline, calculations of energy savings, and required project 
documentation is provided in BPA’s Engineering Calculations with Verification (ECwV) 
Protocol17. 

4.4.4 Savings Calculation by KPI Bin Model 

If the major energy driver at a site is not a continuous or ordinal variable but a nominal 
variable, then regression modeling of the system can prove difficult. For these reasons, the 
ESI EPT Team is demonstrating the use of a KPI Based Classification method. Details 
regarding this method are provided in Appendix F.  

4.5 Options for Establishing Statistical Confidence to Savings Value 

4.5.1 Uncertainty in the Regression Model 

In certain instances, it may be necessary to specify a range of energy savings performance for 
a defined statistical confidence level.   

ASHRAE Guideline 14-2002 Measurement of Energy and Demand Savings, Annex B provides 
a detailed description of uncertainty analysis.  The following methodology provides an 
approach for calculating uncertainty derived from model error.  It should be noted that this 
approach does not capture error associated with the measurement hardware.  In most cases, 
the measurement error component should be small relative to the regression model error.   

The fractional uncertainty for the majority of ESI MT&R models can be estimated by the 
following equation: 

௦௔௩௘,௠ܧ∆
௦௔௩௘,௠ܧ

ൌ ݐ ∙
1.26 ∙ ሺሺܸܥ

݊
݊ᇱሻሺ1 ൅

2
݊ሻ ∙

1
݉ሻ

ଵ
ଶ

ܨ
 

Where: 

t=  t-statistic for desired confidence level 
CV= Coefficient of variation 
n,m =  number of observations in the baseline and treatment period, respectively 
F= observed savings during treatment period 
 
 

                                                           

16 Bonneville Power Administration (2014). Small Industrial High Performance Energy Management (SI HPEM) Delivery 
Guide [revision 2]. Section 3.4, p. 20.  

17 Bonneville Power Administration (2012). Engineering Calculations with Verification Protocol [version 1.0] 
http://www.bpa.gov/Energy/N/pdf/6_BPA_MV_ECwV_Protocol_May2012_Final.pdf 
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n=  number of observations in baseline 
n'= number of independent baseline period observations  
ρ= auto-correlation coefficient  

݊ᇱ ൌ ݊
ሺ1 െ ሻߩ
ሺ1 ൅ ሻߩ

 

While the preceding methodology is generally applied to analyze savings uncertainty in an ex-
post analysis, this analysis can be used to inform the model development, particularly when 
the model developer is faced with multiple options related to time interval or variable 
selection. 

4.5.2  Statistical Confidence for Backcast Method 

The fractional savings uncertainty (FSU) equation can also be used to estimate savings 
uncertainty for the Backcast method. When using the fractional savings uncertainty equation, 
the model statistics and baseline observations (n) occur during the savings period of the 
project.  Likewise, the number of observations during the treatment period (m) occurs during 
the baseline period of the project.  

4.5.3  Statistical Confidence for Mean Model  

When applying the Mean Model approach, the student T-test should be applied to establish 
statistical confidence that the energy use of the baseline and treatment period are truly 
different and the assumed energy drivers are not.  This is performed by: 

1. Calculating the average energy use during the baseline period. 
2. Calculating the t-stat at 80% confidence for the energy use during the treatment 

period. 
 

Energy savings will be achieved if: 

ݐܽݐݏݐ .1 ൒
ெ௘௔௡	ா௨௦௘ಳೌೞ೐೗೔೙೐
ெ௘௔௡	ா௨௦௘೅ೝ೐ೌ೟೘೐೙೟

 

 

2. Distribution of the perceived energy drivers from both baseline and treatment 
periods is deemed acceptable by EPT Team. 

  4.6 EPT Review and Approval 

The savings calculation methodology and verified savings value will be documented in the 
HPEM or Track and Tune Completion Report.  The Energy Performance Tracking (EPT) team 
will provide final sign-off, but BPA’s Energy Management Engineering COTR (EM-ECOTR) will 
provide final authorization of the savings and incentive.   
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5.  Adjustments to the Baseline Model 

5.1 Scenarios for Model Reassessment 

The model is considered valid for the range of the independent variables observed during the baseline 
period, provided the general operation and qualitative factors of the facility or system remain constant.  
The SEP protocol provides an additional provision that validates the model if the independent variable 
is within ±3 standard deviations from the mean of the baseline data set18.  

Scenarios that would trigger a reassessment of the baseline model include: 

 A sustained increase or decrease in the observed level of an independent variable, 
outside the range for which the baseline model was established.   

 A change in business operations making an independent variable obsolete (e.g., change 
in process flow). 

 A change in business operations that requires a new independent variable (e.g., new 
product type). 

 An uncontrollable and unforeseen change in raw material types, grades, or properties 
that changes the energy intensity in a positive or negative direction. 

 Other changes in what the IPMVP refers to as “static factors,” such as facility size, 
occupancy, or equipment design. 

5.2 Options for Baseline Adjustment 

Options for baseline adjustment include the following, in order of preference: 

1. If the change involves new equipment or facility space, isolation of the electrical load 
through a dedicated submeter.  The ensuing MT&R savings is simply the gross MT&R 
savings minus the submetered energy use.    

2. Development of a new regression model, with the addition of a new independent variable 
that reflects the change, if that variable proves to be statistically significant. 

3. If the energy drivers have remained the same, but have significantly increased or 
decreased relative to the baseline period, a new regression model can be developed from 
a more current data set.  

4. Utilization of the existing baseline model, with the addition of an “indicator variable” 
placed in the data set at the time of the change.  The impact of the change is thereby 
quantified by solving for the indicator variable coefficient using regression, following a 
suitable data collection period. 

5.3 Guidelines for Modification of Regression Model 

When Options 2 or 3 are required, a decision must be made regarding a suitable rebaselining period 
that adequately captures the new range of operating conditions, including seasonal cycles (if 
applicable).  During this period, savings incentives would typically be put on hold, but the accumulated 
savings that preceded the retrofit would be considered through engineering calculations with 
verification.     

                                                           

18 The Regents of the University of California, Section 3.4.6, p.11 
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5.4 EPT Approval  

When a need arises to adjust a baseline model, a rebaselining proposal should be reviewed and 
approved by the EPT team, preferably in advance of the change. 

6.  Projecting Year 1 Energy Savings from the Performance Period  

For Track and Tune projects, incentives are based on a projection of Year 1 energy savings. The 
projected Year 1 energy savings are based on the achieved energy savings obtained during the 
performance period, which is typically 90 days. Four methods to project Year 1 energy savings are 
provided below. For each of these methods, it is essential that the following factors are taken into 
account: 

1. The number of valid observations during the performance period. 
2. The expected number of valid observations during the remainder of Year 1. 
3. The expected distribution of the energy drivers during the remainder of Year 1 relative to 

the distribution of the energy drivers during the performance period.  

    6.1 Direct Percentage Basis 

 When the distribution of the energy drivers is expected to be the same for the remainder 
of Year 1, Year 1 energy savings can be projected by extrapolating percent energy savings 
from the performance period. 

    6.2 Percentage Basis with Forecast of Energy Drivers 

 When the distribution of energy drivers is expected to be different for the remainder of 
Year 1, the distribution of energy drivers must be considered when projecting Year 1 
energy savings. For example, if during the performance period, energy savings were only 
obtained when production was low, then the expected distribution of production should 
be used to project Year 1 energy savings. If production is expected to be high for the 
majority of the Year 1, it would be incorrect to project Year 1 savings based on savings 
achieved during the performance period that occurred when production was low. 

    6.3 Normalized Annual Consumption 

 This method can be used in lieu of the “Percentage Basis with Forecast of Energy Drivers” 
method described above. This method requires the development of a second regression 
model for the performance period. The total derivative of the baseline energy equation is 
taken to develop a governing equation. The inputs for the governing equation are the 
coefficients from the baseline and performance period models, as well as the projected 
distribution of energy drivers. TMY3 weather data is typically used for the weather 
dependent energy drivers and the best estimate of Year 1 production is used for the 
production energy drivers.   

 This modeling approach provides a disaggregation of energy savings by energy drivers, 
which provides transparency for how energy savings were achieved.  

 The weakness of this approach is that it requires additional calculation steps and that the 
energy signature of the baseline and performance periods must be the same.   

 This method is similar to the Standard Condition Adjustment Model defined by SEP.  
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    6.4 Intervention Step Model  

 The intervention step model approach can also be used in lieu of the “Direct Percentage 
Basis” method described in Section 6.1. This method was used by Cadmus for the 2012 
Energy Management Impact Evaluation, and follows a methodology described by 
Luneski’s publication (2011)19 . The intervention step model entails developing a new 
regression model using an indicator variable to differentiate the baseline and 
performance period data. The value of the indicator variable represents the energy 
savings. 

 This modeling approach does not normalize the savings value for annual weather or 
production and thus it should not be used when the distribution of the energy drivers is 
expected to be significantly different for the remainder of Year 1.  

 

 

   

                                                           

19Luneski, R.D. 2011.  A Generalized Method for Estimation of Industrial Energy Savings from Capital and Behavior 
Programs.  Industrial Energy Analysis 2011.    
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Appendix A – Treatment of EEMs During the Baseline Period 

OPTION* DESCRIPTION GUIDELINES MERITS DEMERITS 

1 

Standard Approach 
Select a baseline period without capital projects and immediately prior to 
the treatment period. 
y (kWh/period) = B0 +  B1x1 + B ixi  

a. Verify absence of utility-
incentivized EEMs by 
interviewing facility and 
speaking to serving utility. 
b. Confirm energy intensity 
profile is consistent over 
the selected period. 

a. Incorporates the full 
data set in the baseline 
model. 
b. Requires no 
manipulation of data. 
c. Requires no 
adjustments during 
treatment period. 

a. No obvious demerits, 
provided energy 
intensity profile is 
consistent through 
baseline period. 

2 

 
Year-End MT&R Adjustment 
Choose a baseline period immediately prior to the first capital 
project.  Subtract M&V savings from the year-end MT&R savings.   
y (kWh/period) = B0 + B 1x1 + B ixi + (IV =0,1)K ·(M&V)K 

 

a. Maximum exclusion 
period = 12 months. 
b. Exclusion period must 
have a consistent energy 
profile, aside from the 
EEM(s). 

a. Provides direct 
reconciliation with EEM 
M&V value. 
b. Requires no 
adjustment of baseline 
data set. 

a. Data immediately 
preceding treatment 
period is excluded. 
b. M&V adjustment 
must be performed 
through treatment 
period. 

3 
Pre-EEM Baseline Normalization by M&V Value 
Adjust the pre-EEM baseline values by the EEM M&V value. 
y (kWh/period) = B0 +  B 1x1 + B ixi   

a. EEM completion report 
must be reviewed and 
included as attachment. 
b. Interactive effects 
described in project report 
must be factored in to 
baseline adjustment. 

a. Provides direct 
reconciliation to M&V 
value. 
b. Enables use of the 
entire baseline data set. 
c. CUSUM for treatment 
period starts at zero. 

a. Requires adjustment 
to baseline data set 
(IPMVP does not 
prohibit). 
b. Accurately 
incorporating interactive 
effects is challenging 
and labor intensive. 

4 

 
Baseline Normalization by Factored Indicator Variable 
Apply an indicator variable in the baseline data set, representing the 
implementation of an EEM.  The indicator variable may or may not be 
factored with one or more primary independent variables to account for 
interactive effects. 
y (kWh/period) = B0  +  B1x1 + Boxy + + B'·(IV =0,1)·x' 
 

a. Factored indicator 
variable will add to the 
number of points required 
in the baseline data set 
(n*6). 

a. Allows regression 
model to solve for 
interactive effects of 
EEM with other energy 
drivers. 
b. Yields the highest R-
square. 

a. No reconciliation with 
EEM’s M&V value. 
b. If backsliding 
occurred on the EEM, 
program component 
would pick up any 
recapturing of the 
original savings.   
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OPTION* DESCRIPTION GUIDELINES MERITS DEMERITS 

5 

 
Indicator Variable Representation of Non-Incentivized EEM 
To prevent incentivizing a previously implemented non-incentived EEM by 
program component, apply an indicator variable representing the 
implementation of the EEM, and solve for the coefficient.   
y (kWh/period) = B0  +  B 1x1 + B ixi + B'·(IV =0,1) ·x' 
 

a. Non-incentivized EEMs 
implemented during 
baseline period should be 
accurately reflected in 
baseline model. 

a. Prevents “free-rider” 
EEMs from inflating the 
savings associated with 
program component. 
b. Allows use of the 
entire baseline data set. 

a. The quantification of 
the savings associated 
with the EEM is limited 
to the precision of the 
model. 

*Options 1~4 are listed in a hierarchical order of preference.   Option 5 describes an independent scenario. 
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Appendix B – Treatment of Incentivized EEMs Installed During the Treatment Period 

PROJECT 
INSTALLED 

SAVINGS OBSERVED 
IN CUSUM? M&V STATUS 

PRORATING METHOD 

Start Date Savings Value 

No,  
or Incomplete n/a n/a n/a n/a 

Yes 

No 

Not started n/a n/a 

In progress Use the Actual Project M&V End Date. 
Wait for M&V to be completed (if an early 
estimate is needed, solve for value in 
CUSUM). 

Completed Use the Actual Project M&V End Date.  Use site savings M&V value. 

Yes 

Not started 
Based on CUSUM inflection, and ideally 
supported by email from ESIP (e.g., 
equipment was commissioned on xx/xx date). 

Option A.  Solve for saving value using 
indicator variable during treatment period. 

Option B.  Use estimated site savings from 
custom project proposal. 

Option C.  If the savings value from A and B 
differ significantly, confer with EPT team. 

In progress 

Option A.  Based on CUSUM inflection, and 
ideally supported by email from ESIP.  

Wait for M&V to complete (if an early estimate 
is needed, solve for value). 

Option B.  At the latest, use "Actual Project 
M&V End Date." 

Completed 

Option A.  Based on CUSUM inflection, and 
ideally supported by email from ESIP. 

Use site savings M&V value. 
Option B.  At the latest, use "Actual Project 
M&V End Date." 
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Appendix C – Overview of Regression Output 

  

 

Figure 12. Regression output from “R” open source statistical software. 

 

 

Figure 13. Regression output from Microsoft Excel. 

Note:  CV must be calculated 
separately. 
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Appendix D – Glossary of Terms   

The definitions included below address terms used within the body of this document, presented in the context 
of ESI’s Monitoring, Targeting and Reporting procedure.  For a more comprehensive overview of statistical 
terms related to measurement and verification, please refer to BPA’s Glossary for M&V:  Reference Guide20. 

1. Autocorrelation Coefficient: The autocorrelation coefficient is a measure of the correlation of a time series 
with its past and future values (also referred to as serial correlation).  In a time series plot of residuals, 
autocorrelation is characterized by a tendency for the bias in data point “n” to be a predictor of a similar 
bias in data point “n+1”.  The autocorrelation coefficient can be calculated by performing regression on 
two identical data sets, offset by one unit of time.  The square root of the resulting coefficient of 
determination is the autocorrelation coefficient (ρ) for the data set. 
 
Auto-correlation (p) can also be calculated from the residuals, e, from the following equation: 

ρ  ൌ		
∑ ௘೟		௘೟షభ			
೙
೟సమ

∑ ௘೟
మ೙

೟సభ
 

2. Change-Point Model:  A model in which the relationship of a dependent variable is discontinuous with 
respect to an independent variable.  The change-point is the value of the independent variable at which 
this discontinuity occurs.  In the context of industrial energy efficiency, a common scenario arises when the 
energy intensity of a building or system changes at a specific ambient temperature, at which the HVAC 
system switches from a heating mode to a cooling mode. 
 

3. Coefficient of Determination (R-square):  Statistically, the R-square represents the proportion of the total 
variation in the dependent variable that is explained by the regression equation.  Mathematically, 

R=square is defined as R-square = 
∑൫௒෠೔ି௒൯

మ

∑൫௒೔ି௒൯
మ, where,                                                                                

෠ܻ௜ ൌ the predicted energy value for a particular data point using the measured value of the independent 
variable. 

ܻ ൌ mean of the n measured energy values, ܻ ൌ
∑௒೔
௡

. 

௜ܻ ൌ actual observed value of the dependent variable. 

4. Coefficient of Variation (CV RMSE):  The CV is calculated as the ratio of the root mean squared error 
(RMSE) to the mean of the dependent variable (energy).  CV is a dimensionless value, and the ratio is 
typically multiplied by 100 and given as a percentage.  The CV aims to describe the model fit in terms of 
the relative sizes of the squared residuals.  CV evaluates the relative closeness of the predictions of the 
actual values (the uncertainty of the model), while R-square evaluates how much of the variability in the 
actual values is explained by the model.  

 

CV(RMSM) = 
ඨ൭

∑൫೤ෝ೔ష೤೔൯
మ

ሺ೙ష೛షభሻ ൱

௬
  100	ݔ	

5. Energy Champion:  This person, assigned by the end user, determines potential energy efficiency projects 
and tracking techniques. 

 
6. Energy Management:  The application of the business principles of continuous improvement to drive 

systematic, long-term reductions in the energy intensity of a system, facility, or organization.   
                                                           

20 Bonneville Power Administration’s  Glossary for M&V:  Reference Guide, Version 1.0, September 2011 



M T & R  G U I D E L I N E S  R E V  5 . 0  

 FEBRUARY 2015 F 

 
7. Fractional Savings Uncertainty:  The uncertainty divided by the savings, where uncertainty is measured as 

the quantity of savings from the upper confidence limit to the lower confidence limit surrounding a savings 
estimate.   

 
8. Heteroscedasticity: In contrast to homoscedasticity, this occurs when error (or residual) variance is not 

constant throughout the observations. For example, when the residual variance is shown to increase or 
decrease with the value of an independent variable.   

 
9. Homoscedasticity:  Homoscedasticity generally means that all data in a model have similar variance, over 

the modeling period.  Within linear regression, this means that the variance around the regression line is 
similar for all values of the dependent variables.  

 
10. Indicator Variable:  Also referred to as categorical variables, a variable used to account for discrete levels 

of a qualitative variable.  Generally, indicator variables are assigned a value of 0 or 1 to account for 
different modes of operations, and a qualitative variable with r levels can be modeled with r-1 indicator 
variables. 

 
11. International Measurement and Verification Protocol (IPMVP):  The IPMVP provides an overview of current 

best practice techniques available for verifying results of energy efficiency, water efficiency, and renewable 
energy projects in commercial and industrial facilities.  It may also be used by facility operators to assess 
and improve facility performance.  The IPMVP is the leading international standard in Measurement and 
Verification protocols.  It has been translated into ten languages and is used in more than 40 countries. 
 

12. Measurement and Verification (M&V):  The process of using measurement to reliably determine actual 
savings created within an individual facility by an energy management, energy conservation, or energy 
efficiency project or program. As savings cannot be directly measured, the savings can be determined by 
comparing measured use before and after implementation of a project, making appropriate adjustments 
for changes in conditions.”21 
 

13. Measurement Boundary:  A notional boundary drawn around equipment and/or systems to segregate 
those which are relevant to savings determination from those which are not.  All energy uses of equipment 
or systems within the measurement boundary must be measured or estimated, whether the energy uses 
are within the boundary or not. 
 

14. Mean Model:  (Also known as a Single Parameter Model.)  A model that estimates the mean of the 
dependent variable. 
 

15. Monitoring, Tracking and Reporting (MT&R):  MT&R refers to the measurement systems, statistical tools, 
and business practices associated with measuring energy intensity, establishing targets for improvement, 
and reporting results and impacts.  MT&R has many similarities to the Plan-Do-Check-Act (PDCA) 
methodology that is central to several widely adopted business performance standards. 

 
16. Multicollinearity: A phenomenon in which two or more independent variables in a multiple regression 

model are correlated. 
 

17. Net Determination Bias Error (NBD or NBE):  A statistical metric that quantifies the tendency of a model to 
underestimate or overestimate savings.  Typically represented as a percentage.  Note that if regression is 
performed properly, net determination bias should be zero.   

 

                                                           

21 International Performance Measurement and Verification Protocol.  Efficiency Evaluation Organization.  10000-1.2010.  
www.evo-world.org 
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NTB =  
∑ሺ௒೔ି௒෠೔ሻ

∑௒೔
 x 100; a positive value indicates a tendency of the model to overestimate savings. 

18. Regression Model:  A mathematical model based on statistical analysis where the dependent variable is 
regressed on the independent variables which are said to determine its value.  In so doing, the relationship 
between the variables is estimated statistically from the source data. 
 

19. Tune-up – The major on-site technical effort, led by the Tune-up engineer, which may result in immediate 
operational changes and produces a prioritized list of low-cost/no-cost action items.   
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Appendix E – Models with Irregular Time Intervals   

When developing an energy model based on data of varying intervals, time intervals must be accounted for in 
the regression analysis or the model will be biased. This is accomplished by first converting the data for each 
observation of the independent and response variables to average values. Then all dependent and 
independent variables need to be weighted by the number of intervals in the billing period. This can be 
accomplished by using weighted regression analysis, or duplicating each observation by the number of time 
intervals in the billing period.  

Energy models with irregular time intervals occur most often when developing energy models with monthly 
utility bills. Consider, for example, the case when the billing period for each utility bill is different. When 
developing the energy model, the model must account for this irregular time interval to eliminate bias from the 
varying time periods. Table 2. shows the data per billing period and the daily average values for this data. Note 
that because Tdb was already provided as an average value, this value is the same for both the billing period 
and the daily average.  

Table 2. Example data set for weighted regression. 

 

After the average values per interval are obtained, in this case daily average values, the analysis can be 
performed by either using weighted regression or duplicating each observation by the corresponding number of 
time intervals for each observation. When using weighted regression, the weights, W, correspond to the 
number of time intervals per observation. For this example, Wii, which is a diagonal matrix, would be:  

Wii = [27, 29, 28, 29, 28, 39, 29, 29, 33, 30, 24, 38] 

 

 

Billing 

Period Days/Billing 

Period

Electricity 

Use 

(kWh/Billing 

Period)

Avg. Tdb 

(°F/Billing 

Period)

Production 

(lbs/Billing 

Period)

Electricity 

Use 

(kWh/dy)

Avg. Tdb 

(°F/dy)
Avg. 

Production 

(lbs/dy)

Jan 27 227,772 39.0 2,649 8,436 39.0 98.1

Feb 29 246,471 39.7 2,448 8,499 39.7 84.4

Mar 28 142,072 42.1 2,335 5,074 42.1 83.4

Apr 29 172,318 48.2 1,891 5,942 48.2 65.2

May 28 123,368 52.5 1,229 4,406 52.5 43.9

Jun 39 126,945 61.3 1,685 3,255 61.3 43.2

Jul 29 101,529 66.8 1,595 3,501 66.8 55.0

Aug 29 133,429 67.4 2,042 4,601 67.4 70.4

Sep 33 150,975 63.5 2,290 4,575 63.5 69.4

Oct 30 144,720 52.7 2,112 4,824 52.7 70.4

Nov 24 140,880 47.5 1,596 5,870 47.5 66.5

Dec 38 221,502 37.4 1,661 5,829 37.4 43.7

Total/Avg. 363 1,931,981 51.5 1,961 5,401 51.5 66.1

Billing Period Daily Average
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When duplicating observations, each observation of average values is duplicated by the number of time 
intervals for the observation. In this example, the observations for January would be duplicated 27 times; the 
observations for February would be duplicated 29 times, and so forth.  A spreadsheet can be used to facilitate 
duplicating the observations.  

A weighted regression set was developed to demonstrate how weighted regression is performed by duplicating 
observations as described above. Then both the weighted regression set and the daily average, or ordinary 
least squares regression set, was fit to a three parameter, multivariable heating model as: 

	ܧ ൬
ܹ݄݇
ݕ݀

൰ ൌ ௢ߚ ൅	ߚଵሺߚଶ െ .݃ݒܣ ሻା݌݉݁ܶ	ݕ݈݅ܽܦ ൅	ߚଶሺ݃ݒܣ.  ሻݐݏݑܦ	ݓܽܵ	ݕ݈݅ܽܦ

Table 3 shows that the regression coefficients calculated using weighted regression are different from the 
ordinary least squares method.  

Table 3. Coefficient results from weighted and ordinary regression analysis. 

 

Table 4 shows that the sum of the residuals for ordinary regression analysis differs from zero. This difference is 
caused by bias in the model coefficients. The sum of the residuals for weighted regression is nearly zero. This 
difference of -1 is the result of numerical errors in transferring coefficient values from the modeling program to 
the calculation spreadsheet and underscores the necessity of reporting and using coefficients with adequate 
precision.                                 

Weighted 

(Observations = 363)

Ordinary 

(Observations = 12)

Bo 1,477.6960 1,518.1765

B1 124.4626 125.1822

B2 58.5320 58.5860

B3 42.1438 41.4257
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Table 4. Comparison of residuals between weighted and ordinary regression analysis. 

 

Table 5 shows that ordinary regression analysis results in a net determination bias (NDB) of more than the 
acceptable cut-off criterion of 0.005% given in ASHRAE Guideline 14. The weighted regression provides a net 
bias error that meets this criterion and could be improved by using more precise estimates of the coefficients.  

Table 5. Comparison of NDB between weighted and ordinary regression analysis. 

 

While weighted regression is a useful tool for eliminating model bias, it should be noted that the duplication of 
observation results in artificially high R-square values and T-statistics for independent variables.  Therefore, 
ordinary regression should be applied for the screening of competing models and the selection of independent 
variables, with weighted regression applied as a final step to dial-in the coefficient values on the selected 
model (for the purpose of minimizing Net Determination Bias).     

 

 

 

Billing        

Period

Electricity 

Use 

(kWh/Billing 

Period)

Predicted 

Electricity 

Use 

(kWh/Billing 

Period)

Residual 

(kWh/Billing 

Period)

Predicted 

Electricity 

Use 

(kWh/Billing 

Period)

Residual 

(kWh/Billing 

Period)

Jan 227,772 217,161 10,611 216,914 10,858

Feb 246,471 213,977 32,494 213,977 32,494

Mar 142,072 197,054 ‐54,982 197,054 ‐54,982

Apr 172,318 159,831 12,487 159,831 12,487

May 123,368 114,200 9,168 114,200 9,168

Jun 126,945 128,634 ‐1,689 128,634 ‐1,689

Jul 101,529 110,073 ‐8,544 110,073 ‐8,544

Aug 133,429 128,894 4,535 128,894 4,535

Sep 150,975 145,282 5,693 145,282 5,693

Oct 144,720 155,115 ‐10,395 155,115 ‐10,395

Nov 140,880 135,680 5,200 135,680 5,200

Dec 221,502 226,082 ‐4,580 226,082 ‐4,580

Total 1,931,981 1,931,982 ‐1 1,931,735 246

Weighted OrdinaryActual

Method NDB

Weighted ‐5.8E‐07

Ordinary 1.3E‐04
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Appendix F – KPI Bin Model 

If the major energy driver at a site is not a continuous or ordinal variable but a nominal variable, then 
regression modeling of the system can prove difficult. Examples of such nominal variables are paper grade in a 
paper mill, color in a glass plant, or product type in a manufacturing process. If the number of different types in 
that nominal variable is small, then the unique energy intensity characteristic of each group can be 
represented by an individual variable, which then can be used in a conventional least-square regression 
analysis. For instance, if there are only three possible glass colors, three variables can be created with 
production volumes for each of the three colors and all three variables can have separate parameters in the 
final model. If number of types within the nominal variable is too big, however, it becomes unfeasible to create 
and use individual variables within a regression model.  

Therefore, because nominal variables cannot be used in a regression, a different modeling technique must be 
chosen if that energy driver is to be considered. One modeling type that has been used in this situation is a KPI 
bin model using the nominal variable as one of the binning factors. A KPI bin model essentially calculates a KPI 
for each type within the nominal variable.  If paper grade is the nominal variable, then a KPI with the units 
kWh/ton is created. In addition, a baseload electricity can be calculated if there are times where the 
production is zero by averaging all the electricity values during zero production. The benefit to this methodology 
is that each type within the nominal variable has its own equation, which can lend clarity to the effect the 
different types have on the electrical usage. 

The steps to this technique are as follows: 

1. Determine the threshold for minimum number of hours acceptable to create each specific KPI. 
2. Determine the baseload or energy use during zero production (i.e., shutdowns). 
3. Calculate the average production rate and total average power for each type within the nominal 

variable and acceptable production range. 
4. Calculate the average power for each KPI by subtracting the baseload power from the total average 

power for each type within the nominal variable using the following equation: 
 

ݎ݁ݓ݋ܲ	ܫܲܭ	݁݃ܽݎ݁ݒܣ ൌ ݎ݁ݓ݋݌	݁݃ܽݎ݁ݒܽ	݈ܽݐ݋ܶ െ  ݎ݁ݓ݋݌	݀ܽ݋݈݁ݏܽܤ
 

5. Calculate the variable KPI using the following formula: 
 

ሾܹ݄݇ሿ	ݎ݁ݓ݋ܲ	ܫܲܭ	݁݃ܽݎ݁ݒܣ
ሺ݁݃ܽݎ݁ݒܣ	݊݋݅ݐܿݑ݀݋ݎܲ	ሾݐ݅݊ݑሿሻ

ൌ 	
ܹ݄݇
ݐܷ݅݊

 

 
6. Calculate the variable energy by using the bin type and production rate, making sure the production 

rate is within the model range, and create a predicted energy consumption using the following 
formula: 

 

ݕ݃ݎ݁݊݁	݀݁ݐܿ݅݀݁ݎܲ ൌ 	ܫܲܭ ൤
ܹ݄݇
ݐ݅݊ݑ

൨ ∙ ሿݐ݅݊ݑሾ݊݋݅ݐܿݑ݀݋ݎܲ	݈ܽݐ݋ܶ ൅  ሾܹ݄݇ሿ	ݕ݃ݎ݁݊݁	݀ܽ݋݈݁ݏܾܽ

7. Calculate residuals  
8. Create a CUSUM 
 

One drawback for this type of modeling is that it requires a lot of data to create. In order to create a KPI for 
each type within the nominal variable, pure data for that type is needed. For instance, if a glass plant makes 
multiple colors within a day then in order to calculate the KPI both production and electrical energy data need 
to be obtained for the hours each of the different colors were made. Therefore, data would most likely need to 
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be hourly, unless the plant only made one color each day, in which case the model could be created using daily 
data. 

Savings Calculation 

Savings calculations for this type of modeling are really no different than for a regression model. Once the bin 
KPIs are created, a predicted value for electrical usage can be calculated and compared to the actual usage. If 
the interval of the data used to create the KPI Bin model is daily, for instance, then for every day after the 
baseline, the nominal type created that day and the production amount would be plugged into the KPI equation 
and a predicted electricity value would be calculated. That predicted electricity would be used to create a 
residual for that day and the residuals would be added up to create a CUSUM. The CUSUM value would be 
used as the savings amount. 

Statistical Confidence 

Statistical confidence in the model can be evaluated using the actual electricity values and the predicted 
electricity values created during the baseline period. A regression model can be created using the actual 
electricity value as the dependent variable and the predicted electricity value calculated using the KPI equation. 
That regression will give an R2, CV, Observations, and autocorrelation coefficient which can be evaluated using 
the same criteria as a normal regression. 
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Appendix G – Summary of Competing Models    

An example of a summary showing competing models is shown in Table 6.  

Table 6. Example of competing model summary. 

 

Interval Period Trial n Prod 1 Prod 2
Total 

Prod

Temp‐

Dry Bulb
R2

SE 

(kWh/

period

)

CV‐

RSME 

(%)

FSU (5% 

savings at 

80% 

confidence)

comment

1 364 ‐ ‐ T=25.1 T=8.9 0.66 4,734 12.2% 20.0%
excluded 3/9/2014 due to DLS 

change over error

2 333 T=25.2 T=17.0 0.84 3,187 8.1% 15.5%
Eliminated December 2013 

due to noisy residuals

3 333 T=13.3 T=3.6 T=12.0 0.85 3,131 8.0% 15.9%
Note:   A/C increased from 

0.059‐‐> 0.096 from Trial 7 to 

4 331 T=16.8 T=4.9 T=12.5 0.89 2,644 6.8% 11.8%
Eliminated 6/28‐6/29/2013 

due to high residuals 

5 329 T=21.1 T=7.1 T=15.2 0.92 2,219 5.7% 10.1%
Eliminated 10/1/2013 and 

3/24/2014 ‐ outliers

6 360 T=22.4 T=8.2 T=16.7 0.92 2,247 5.8% 10.2%

Figured out that production 

data was off by one day for 

Dec.  Added back in.

7 360 T=15.0 T=19.6 0.94 1,882 4.8% 8.9%

Eliminate 12/25/13 outlier, 

return 3/24/14 (not an outlier)

FINAL MODEL

Daily
5/1/2013‐

4/30/2014
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Appendix H - MT&R Decision Tree
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Appendix I – Revision History 

REVISION RELEASE DATE CHANGES 

1.0 April 12, 2010 New Document 

2.0 May 14, 2010 Addressed feedback from BPA Planning and CADMUS Group (Document Dated 
April 15, 2010). 

3.0 
March 7, 2012 
 

General 
 Incorporated Document Objective, clearly stating ownership by ESI EPT 

Team. 
 Added various appendixes and illustrations, including Glossary of 

Terms. 
 Added revision history. 

Section 1 
 Added a requirement that the effect of ambient temperature should 

always be tested for statistical significance.   
 Clarified requirement for calibration of in-house submeters that don’t 

match revenue meter boundary. 
Section 2 

 Clarified strong preference for including even intervals of annual cycles 
in baseline period. 

 Included specific guidelines for adjusting for incentivized or non-
incentivized EEMs that were installed during the baseline period. 

 Added additional guidance and illustration for outlier removal, and 
time-series adjustments. 

 Included discussion of change-point models. 
 Added a  discussion of multicollinearity 

Section 3 
 Added a requirement to assess auto-correlation of the residuals. 
 Added a requirement to calculate Net Determination Bias of the 

residuals. 
 Added a requirement to calculate adjusted R-sqr. 
 Included specific options for “Alternatives to Regression Modeling.” 

Section 4 
 Added guidance on adjustments for concurrent incentivized projects 

during the “treatment period.” 
 Added discussion of model uncertainty. 

Section 5 
 Added a section that outlines specific options for baseline adjustment. 
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REVISION RELEASE DATE CHANGES 

4.0 Sept. 25, 2013 

Section 2.2 
 Changed data screening criteria from three standard deviations to four 

standard deviations. 
 Changed reference for data screening. 
 Eliminated graph in Figure 1. 

Section 2.4  
 Adding clarifying language for multicollinearity. 
 Added reference for multicollinearity. 

Section 3.2 
 Replaced Figure 6 with new figure. 
 Added Durbin-Watson test statistic. 

Section 3.4 
 Added section. 

Section 3.5.1 
 Added section. 

Section 3.5.2 
 Terminology change from mean-shift to mean model. 

Section 4.3 
 New figure for Figure 8. 

Section 4.5.2 
 Added section. 

Section 4.5.3 
 Added section. 

Section 6.0 
 Added section. 

 

5.0 February 20, 2015 

Section 1.1 
 Added content regarding the measurement boundary and accounting 

for all energy and mass flows crossing the boundary. Added Figure 1.  
Section 1.2  

 Added content about the inclusion of process parameters within the 
energy mode. Added Figure 2.   

Section 2.2  
 Added content regarding the handling of data from control systems. 

Included Figure 4 and referenced weighted regression.  
Section 4.4.3 

 Added section: Savings Calculation by Bottom-Up Approach. 
Section 4.4.4 

 Added section: Savings Calculation by KPI Based Classification. 
Appendix E 

 Added clarifying language about using weighted regression to 
determine coefficient values. 

Appendix F 
 Added Appendix F: KPI Bin Model.  

Appendix G 
 Added Appendix G: Summary of Competing Models. 

 
 

 


