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ABSTRACT 
 

Strategic energy management (SEM) programs seek to implement long-lasting, comprehensive changes 
in energy management and consumption at industrial facilities.1 Evaluators typically estimate energy savings 
associated with SEM programs using regression analysis to model facility energy consumption as a function of 
weather and other variables. They then use the regression models to compare energy consumption before and 
after program implementation. Evaluators can choose among several regression model frameworks, with the 
accuracy of results depending on the model selected. Therefore, selecting the right framework proves integral to 
completing an accurate, robust evaluation. Testing frameworks to determine those best suited to evaluate savings 
for a particular facility (and under a specific set of circumstances) presents a challenge as true energy savings value 
at a facility remain unknown. Using all available frameworks, evaluators can estimate savings and compare results, 
conjecturing about how well the frameworks estimate savings, but they cannot compare the estimates to a true 
energy savings value to determine, with certainty, which works best.2  

By using simulated data, evaluators can begin answering questions about which regression models 
perform best and under what circumstances. If simulating facility energy consumption data using a function of 
weather and other known variables (and because they generate it), evaluators can determine “true” savings and 
savings drivers underlying the model. In this study, the authors use simulated energy consumption, based on 
models representing industrial facilities that participate in SEM, to answer two important questions: Which 
regression analysis framework should evaluators use to calculate accurate, robust savings estimates? How should 
the facility regression model be specified within that framework? 

The simulation revealed several important findings: 
 

 The forecast and fully specified pre/post model frameworks produce unbiased estimates and capture 
true savings at the nominal 80% confidence level under most scenarios— for both simple and complex 
facility specifications.  

 For facilities with simple model specifications, the simple pre/post model framework performs 
comparably to the forecast and fully specified pre/post models, with slightly elevated mean absolute 
percentage errors. For facilities with complex model specifications, the simple pre/post framework 
proves unreliable, consistently producing biased savings and failing to reach nominal capture rates. 

 All model specifications tend to produce biased estimates with poor capture rates when omitting 
variables from the model. 

 For a scenario where an event affecting energy consumption occurs during the post period (where an 
indicator variable can be included in a pre/post model, but no estimate is available to adjust savings 
in a forecast model) the forecast model produces biased savings with low capture rates, while fully 
specified pre/post produces unbiased savings estimates and high capture rates. 

 On average, savings are slightly biased for a scenario where the regression model specification does 
not account for autocorrelation, but this produces poor capture rates for true savings.  

 
                                                           
1 Though commercial facilities also implement SEM, this research focused on industrial SEM evaluation. 
2 Evaluators with the true savings estimate clearly do not need to apply a regression model. 
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Introduction 
 

A rapidly growing approach to energy efficiency, strategic energy management (SEM) programs realize 
savings by using capital in concert with operations and management improvements to facilities. By using various 
frameworks, evaluators of these programs can estimate reductions in energy consumption before and after 
program implementation. These frameworks typically involve facility-level regression models, but they use 
different model specifications and underlying assumptions. Industrial facility models pose challenges due to large 
numbers of variables that effect energy consumption and relatively little data available to capture those 
relationships. Typically, they include complex interactions between energy consumption drivers and sometimes 
include nonroutine adjustments before or after an SEM program begins, which affect energy consumption but are 
not related to the program. Nonroutine adjustments may or may not include engineering estimates of energy 
savings. Furthermore, determining which regression framework and model specifications to use in an evaluation 
can be challenging as no industry-standard produces results with proven accuracy when including a variety of 
possible scenarios.  

In this study, the authors used a simulation approach to test different frameworks and model 
specifications. We sought to shed light on those that produce accurate, robust results (and under which 
conditions), providing guidance for future evaluations. A simulation approach proved particularly effective for this 
purpose as we determined “true” savings and model facility energy consumption, based on this savings value and 
on other variables driving energy consumption. As we knew savings underlying the simulated data, we could 
compare true savings to estimates resulting from different regression model frameworks, thus determining—on 
average—the estimates’ accuracy. We assessed accuracy and robustness for the following three regression 
frameworks, described in detail below: 
 

 Forecast 
 Simple Pre/Post 
 Fully-Specified Pre/Post 

 
Further, in our evaluations of actual facility data, we observed that results tended to vary greatly, 

depending on weather and facility conditions, including the following: 
 

 Weather (e.g., heating degree day [HDD], cooling degree day [CDD], mean temperature) 
 Production and occupancy 
 Weekday versus weekend activity 
 Shutdown or closure periods 
 Nonroutine adjustments 

 
Finally, due to differing data collection protocols and procedures, evaluators may not have access to data 

for certain variables, and some data may exhibit autocorrelation or non-normality that the regressions does not 
include. Therefore, we considered evaluations that did or did not include the following model specifications: 
 

 Extraneous variables included or known drivers of energy consumption omitted 
 Correctly or incorrectly specified relationships between variables and energy consumption  
 Nonroutine adjustments included or not included in the regression model 
 Accounted for or did not account for time-series autocorrelation or non-normality in the 

regression analysis 
 

The remainder of this paper provides details on the regression frameworks, weather and facility 
conditions, and additional considerations that we examined using the simulation study. By summarizing the 
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findings, we identify trends regarding how accurately each framework estimates energy savings under different 
circumstances. Ultimately, we provide answers to two important questions:  
 

 Which regression analysis framework should evaluators use to calculate accurate savings estimates? 
 How should the facility regression model be specified within that framework? 

 
Methodology 
 

Evaluators typically estimate SEM program energy savings by comparing energy consumption prior to 
implementing the SEM program (i.e., the baseline) to energy consumption after implementing the SEM program. 
Building baseline models only requires use of pre-program period data and represents a facility’s energy 
consumption in the program’s absence. Still, in modeling the baseline, evaluators typically require data on several 
possible energy drivers: 
 

 Weather (e.g., HDD, CDD, mean temperature) 
 Production and occupancy 
 Weekday versus weekend activities 
 Shutdown or closure periods 
 Timing of nonroutine adjustments 
 
In many facilities, some or all of these variables correlate with energy consumption. In others, however, 

they may not. Using simulated data, we built several baseline models to test misspecification’s effects. 
Upon establishing the baseline model specification, evaluators model post-program period energy 

consumption to find the difference before and after program implementation, and then calculate savings. We 
explored three common frameworks for doing so. In one, we used pre-program energy consumption models to 
forecast energy consumption in the post-program period, absent the SEM program’s effects. We calculated 
savings as the difference between predicted baseline usage and the metered usage. The second framework used 
the baseline model specification, in addition to a post-program indicator. This allowed us to estimate savings 
based on the coefficient corresponding to the indicator, representing average energy savings per time interval. 
The third also used the baseline model, but it included effects from other variables estimated to capture pre-
program and post-program effects (e.g., HDD effects can vary with changes in production or production may 
interact with program effects). These frameworks can be summarized as follows: 
 

1. Forecast: Use a baseline regression model to predict energy consumption in the post-program 
period, absent the program. Sum the differences between predicted usage and metered usage to 
estimate total savings during the post-program period. 

2. Simple Pre/Post: Use a baseline regression model, based on pre-program energy consumption and 
predictor variables. Estimate the model using both pre- and post-program period data, with an 
additional indicator signaling the post-program period’s beginning. Use the post-program period 
indicator’s coefficient to estimate average energy savings per time interval (e.g., day, week, month; 
one or more of these may be an option, depending on the data frequency). Multiply the average by 
the number of time intervals in the post-program period to estimate total energy savings during the 
post-program period. 

3. Fully-specified Pre/Post: Similar to the simple pre/post framework, use a baseline regression model 
with both pre- and post-program data; in this framework, however, include interaction terms with 
the post-program indicator and all predictor variables. The interactions allow predictors to produce 
different effects on energy consumption in the pre- and post-program periods. Estimate the model, 
take the post-program period indicator’s (i.e., main effect) coefficient, multiplied by the number of 
post-program time periods, add each coefficient of the post-program period interactions, multiplied 
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by the sums of their respective variable values during the post-program period, and estimate total 
energy savings during the post-program period.  

 
Simulated Data 
 

The authors simulated two data sets to represent facilities similar to those observed in SEM program 
evaluations. One data set represented a facility with energy consumption as a function of one production process, 
an indicator of production interruptions, and weather (specifically HDD). We called this the “simple facility,” with 
energy consumption driven by two variables without interactions. The second data set represented a facility with 
energy consumption as a function of two different production processes, an indicator of production interruptions, 
weather (HDD), the interaction of weather and production, and a nonroutine adjustment (i.e., an “event”) 
occurring in the pre-program period, resulting in reduced energy consumption. This reflected a “complex facility,” 
where a number of variables drove energy consumption and energy drivers interacted. Both models included a 
nonroutine event in the post-program period, with an engineering estimate associated with energy consumption 
changes. Such events occur frequently in industrial facilities. Examples include installing new equipment at a 
facility, closing part of a facility temporarily or permanently, or staffing changes.  

Error! Reference source not found. provides “true” baseline models for simple and complex facilities 
(pre/post models also include a post-period indicator and interactions between the post-period indicator and each 
other model variable): 
 

Simple Facility: ܹ݇ℎ௧ = ߚ + ௧݊݅ݐܿݑ݀ݎଵܲߚ + ௧ݏ݊݅ݐݑݎݎ݁ݐ݊ܫ ݊݅ݐܿݑ݀ݎܲ ଶߚ + ௧ܦܦܪଷߚ +  ௧ߝ
 

Complex 
Facility: 

ܹ݇ℎ௧ = ߚ + 1௧݊݅ݐܿݑ݀ݎଵܲߚ + 2௧݊݅ݐܿݑ݀ݎଶܲߚ
+ ௧ ݏ݊݅ݐݑݎݎ݁ݐ݊ܫ ݊݅ݐܿݑ݀ݎଷܲߚ + ௧ܦܦܪସߚ
+ 1௧݊݅ݐܿݑ݀ݎܲݔ௧ܦܦܪହߚ + ௧ݐ݊݁ݒܧ ݉ܽݎ݃ݎܲ-݁ݎܲߚ +  ௧ߝ

Where:  
  = The coefficient of the ith variable in the model (i = 0 represents the model intercept)ߚ
kWht = Energy consumption at the facility at time t 
Productiont = Production at the facility at time t  
Production Interruptionst = An indicator of production interruptions at time t 
HDDt = HDDs at time t 
HDDt x Productiont = The interaction between HDD and production at time t 
Pre-Program Eventt = An indicator representing a nonprogram-related change in a facility’s energy 

consumption at time t 
 

We specified the error term using random draws from a normal probability distribution, with variance 
specified in a number of ways. This allowed us to study how accurately each regression framework estimated 
savings in the face of small and large variations, in addition to autocorrelation and heteroscedasticty, and it 
allowed us to generate numerous simulated datasets for each facility type, thus testing how the framework 
performed on average, given random data variations. 

The production and weather variables used in this simulation were constructed so that they were 
uncorrelated. There is a slight correlation between production 1 and the non-production indicator. Figure 1 
visualizes the relationships between energy drivers and energy consumption in the baseline period for a complex 
facility. 
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Figure 1. Scatterplot Matrix of Variable Correlations for a Simple Facility. 
 

The simple facility consumes energy in a similar manner, but correlates only with a single production 
variable, a non-production variable, and HDD. 
 
Testing Models 
 

After simulating the facility data, the authors applied the above-outlined regression frameworks to 
determine those producing accurate results and performing best for each facility. We considered scenarios where 
data were unavailable for one or more production variables, data were missing for the non-routine adjustment, 
data were available for an extraneous variable that did not drive energy consumption, and models where the error 
terms did or did not account for heteroscedasticity and serial correlation. In summary, we tested each regression 
framework using regression model specifications with the following characteristics or cases: 
 

1. Correctly specified 
2. Missing post-program period event data 
3. Omitted weather variable(s) 
4. Omitted production2 variable (complex facility only) 
5. Extraneous variable (CDD) 
6. Heteroscedastic error 
7. Serial correlation in errors 
8. Known post-program period event without engineering estimates (i.e., changes to facility 

consumption resulting from the event cannot be separated from consumption changes due to the 
program in the forecast framework). This scenario violates compliance with American Society of 
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Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Guideline 14-20023 and 
International Performance Measurement and Verification Protocol (IPMVP) Option C4 whole 
building modeling standards, it occurs repeatedly in practice, and therefore proves relevant to the 
model framework comparison. 

 
Table 1 summarizes each case by indicating predictor variables included in the evaluation regression 

model: black dots indicate that the regression model included the variable. Some variables (and case four) do 
not apply for a simple facility (cells greyed out in the table).  
 
Table 1. Energy Drivers Used for Each Test Scenario 

Ca
se

 N
um

be
r 

Energy Drivers Included in Evaluation Regression Model 

Pr
od

uc
tio

n 
1 

Pr
od

uc
tio

n 
2 

In
te

rr
up

tio
ns

 to
 

Pr
od

uc
tio

n 

H
DD

 

Ex
tr

an
eo

us
 

Va
ria

bl
e 

(C
D

D)
 

H
DD

 x
 

Pr
od

uc
tio

n 
1 

Ev
en

t i
n 

Ba
se

lin
e 

 Event In Post-Period 

Ev
en

t S
av

in
gs

 
In

di
ca

te
d 

(P
re

/P
os

t)
 

Ev
en

t S
av

in
gs

 
Su

bt
ra

ct
ed

 
(F

or
ec

as
t )

 

Simple Facility 
1 ●  ● ●      
2 ●  ● ● 
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7 ●  ● ● 
 

 
   

8 ●  ● ● 
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Complex Facility 
1 ● ● ● ●  ● ●   
2 ● ● ● ●  ● ●  ● 
3 ● ● ●    ●   
4 ●  ● ●  ● ●   
5 ● ● ● ● ● ● ●   
6 ● ● ● ●  ● ●   
7 ● ● ● ●  ● ●   
8 ● ● ● ●  ● ●  ● 

 
Using these 15 total cases to estimate savings in each regression framework produced 45 sets of results, 

each of which included savings estimations and measurements for testing the model’s accuracy for 10,000 
simulated datasets, generated for each facility type and error specification. A findings summary follows.  
 
Findings 
 

The authors fit regression models according to each of the 15 cases described above and in all three 
regression frameworks. This produced 45 sets of results for each of 10,000 simulated data sets. The results 
corresponding to each data set included an estimate of energy savings and an 80% confidence interval. We 

                                                           
3 ASHRAE Guideline 14-2002. Measurement of Energy and Demand Savings. American Society of Heating, Refrigerating, and Air-
Conditioning Engineers, Inc. 2002. www.ashrae.org 
4 International Performance Measurement and Verification Protocol: Concepts and Options for Determining Energy and Water Savings. 
2012. Available online: http://www.coned.com/energyefficiency/PDF/EVO%20-%20IPMVP%202012.pdf 
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compared the confidence interval to the “true” savings value to determine whether it included the true savings 
value, and then we estimated a coverage rate by tallying the number of datasets where this proved true.  

For example, if the confidence interval around the savings estimate included true savings in 8,000 of 
10,000 datasets, we concluded the method had a 80% coverage rate. Figure 2 illustrates this concept using 100 
savings estimates and their associated confidence intervals for the correctly specified complex facility forecast 
regression framework. The horizontal axis represents true savings, each dot represents one savings estimate, and 
the lines extending from the dots represent 80% confidence intervals for the respective savings estimate. 
 

 
Figure 2. Coverage Plot for 100 Observed Complex Facility Savings Estimates Using the Forecast Regression Framework 
 

With 80% confidence intervals, we expected coverage rates close to 80%, but note how high or low the 
rates are under the various modeling specifications or misspecifications defined by cases. Coverage provides an 
important indication of the accuracy of results from each framework: the closer the framework comes to 80% 
coverage, the more accurate its estimates. 

Table 2 summarizes findings that provide the true savings value, average estimated savings from each 
framework, and 80% confidence interval coverage.  
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Table 2. Estimated Savings and Confidence Interval Coverage 
Case 
Number 

True Savings 
(MWh) 

Estimated Savings (MWh) 80% Confidence Interval Coverage 
Forecast Simple 

Pre/Post 
Fully-
Specified 
Pre/Post 

Forecast Simple 
Pre/Post 

Fully-
Specified 
Pre/Post 

Simple Facility 
1 6,849 6,847 6,697 6,847 79% 63% 80% 
2 6,849 7,814 7,683 7,815 0% 0% 0% 
3 6,849 6,738 6,601 6,735 71% 39% 70% 
4 N/A N/A N/A N/A N/A N/A N/A 
5 6,849 6,851 6,700 6,851 80% 62% 80% 
6 6,849 6,852 6,702 6,852 79% 70% 79% 
7 6,849 6,848 6,698 6,848 41% 42% 41% 
8 6,849 7,814 6,919 6,850 0% 81% 80% 
Complex Facility 
1 7,615 7,617 5,874 7,617 79.8% 0.0% 79.9% 
2 7,615 9,279 7,590 9,277 0.0% 96.3% 0.0% 
3 7,615 7,598 7,547 7,598 79.9% 98.9% 99.2% 
4 7,615 6,742 5,047 6,745 66.6% 0.0% 51.2% 
5 7,615 7,616 5,858 7,616 79.3% 0.0% 79.6% 
6 7,615 7,620 5,876 7,620 79.1% 0.1% 79.8% 
7 7,615 7,612 5,866 7,612 42.1% 5.0% 42.3% 
8 7,615 9,279 6,123 7,618 0.0% 0.1% 80.4% 

 
These results indicate that the fully specified pre/post framework provides coverage fairly close to 80% 

more frequently than the other two frameworks. None of the frameworks produces good coverage in Cases 2 or 
7 for the facilities, and the forecast and simple pre/post models do not produce good coverage for case 4 for the 
complex facility. Case 2 represents a scenario with missing event data (and hence not included in the regression 
model). Case 7 represents a scenario where serial correlation exists but is unaccounted for. Case 4 represents 
the scenario (in the complex facility) with one production variable missing or omitted from the model. Except for 
the simple pre/post model in the simple facility, coverage rates are at or above the nominal level for Case 3, 
where the HDD variable is missing or omitted from the model. Based on these findings, we conclude that none 
of the frameworks that the study examined reliably produced accurate savings estimates when omitting 
variables or not accounting for serial correlation. 

We also investigated the bias in savings estimation (i.e., the difference between the estimated and 
“true” savings) by computing the mean absolute percentage error (MAPE) and the median percentage error. The 
MAPE told us the average magnitude of the estimation bias, and the median percentage error told us whether 
the model tended to overpredict or underpredict savings. Table 3 summarizes these results. 
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Table 3. Mean Absolute Percentage Error and Median Percentage Error 
Case Number MAPE Median Percentage Error 

Forecast Simple 
Pre/Post 

Fully-Specified 
Pre/Post 

Forecast Simple 
Pre/Post 

Fully-Specified 
Pre/Post 

Simple Facility 
1 1.6% 2.5% 1.6% 0.0% -2.2% 0.0% 
2 14.1% 12.2% 14.1% 14.1% 12.2% 14.1% 
3 2.1% 3.7% 2.1% -1.6% -3.6% -1.7% 
4 N/A N/A N/A N/A N/A N/A 
5 1.6% 2.5% 1.6% 0.0% -2.2% 0.0% 
6 2.3% 2.9% 2.3% 0.0% -2.2% 0.0% 
7 4.5% 4.9% 4.5% 0.1% -2.1% 0.0% 
8 14.1% 2.1% 2.0% 14.1% 1.0% 0.0% 
Complex Facility 
1 2.7% 22.9% 2.7% 0.0% -22.9% 0.0% 
2 21.9% 2.7% 21.8% 21.9% -0.3% 21.8% 
3 2.6% 2.7% 2.6% -0.2% -0.9% -0.2% 
4 11.5% 33.7% 11.4% -11.5% -33.7% -11.4% 
5 2.7% 23.1% 2.7% 0.0% -23.1% 0.0% 
6 3.5% 22.8% 3.5% 0.1% -22.8% 0.1% 
7 7.5% 23.0% 7.5% -0.1% -23.1% -0.1% 
8 21.9% 19.6% 3.0% 21.9% -19.6% 0.1% 

 
These results indicate, on average, absolute percentage error is typically within 5% of the true savings 

for most scenarios. Similar to the confidence interval coverage results, missing or omitted variables and 
autocorrelation not accounted for tends to elevate the absolute percentage error. In most cases, the error did 
not display a tendency to be biased consistently in the same direction. Missing or omitted production variables 
led to overestimation in the complex facility, both for the forecast and the fully specified pre/post regression 
frameworks. Figure 3 provides the MAPE for the simple and complex facilities, and compares values for the 
three savings estimation methods.  

 
Figure 3. MAPE for Each Facility and Regression Framework 
 

Consistent with the capture rates, the simple pre/post method typically produced larger MAPE values 
around estimated savings for the complex facility. Additionally, median percentage errors in the complex facility 
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tended to underestimate savings in all but the omitted post-program period and weather variable scenarios for 
the simple pre/post framework. This provides further evidence that the simple pre/post regression framework 
produces unreliable and biased savings estimates. 

Two scenarios served to violate the typical regression assumption that model error would be distributed 
normally. The first included a heteroscedastic error (i.e., variance increased with production). The second 
included serial correlation in the model error as autoregressive order 2. Figure 4 visualizes the heteroscedastic 
model error in the complex facility, and Figure 5 depicts the model error for the first 365 days in the complex 
facility data. 
 

 
Figure 4. Heteroscedastic Model Error Plotted Versus Production 
 

 
Figure 5. Serial Correlation in the Model Errors for the First 365 Days in the Complex Facility 
 

Despite violation of the normality assumption, the three regression frameworks produced unbiased 
estimates of energy savings. In both scenarios, standard errors were larger for models with non-normally 
distributed errors. Additionally, the scenario with a missing or omitted production variable in the complex 
facility resulted in increased CV’s Table 4 shows the coefficient of variation (CV) for each energy savings 
estimate, calculated as the margin of error for an estimate (at 80% confidence) divided by the estimate itself. A 
larger CV implies increased error for a particular estimate. All CV’s are within the tolerance levels recommended 
by ASHRAE (< 20%). 
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Table 1. CV for Simple and Complex Facilities 
Case 
Number 

CV—Simple Facility CV—Complex Facility 
Forecast Simple Pre/Post Fully-Specified 

Pre/Post 
Forecast Simple Pre/Post Fully-Specified 

Pre/Post 
1 2.0% 2.3% 2.0% 3.3% 6.9% 3.4% 
2 1.8% 2.0% 1.8% 2.7% 5.4% 2.9% 
3 2.2% 2.5% 2.2% 3.3% 6.9% 6.8% 
4 N/A N/A N/A 11.3% 14.9% 10.2% 
5 2.0% 2.3% 2.0% 3.4% 6.9% 3.4% 
6 2.8% 3.1% 2.9% 4.3% 7.8% 4.4% 
7 2.4% 2.7% 2.4% 4.1% 7.6% 4.1% 
8 1.8% 2.7% 2.4% 2.7% 7.5% 3.8% 
 
Conclusions 
 
 Regardless of the framework used to estimate savings, we find omitting significant energy drivers from 
regression models (i.e., post-program period events, production, and weather) tends to result in inaccurate 
program savings estimates and 80% confidence intervals that do not actually include the true savings value 80% 
of the time. The fully specified pre/post framework provides coverage fairly close to 80% in more cases than the 
other two frameworks. The simple pre/post framework typically fails to capture true savings at least 80% of the 
time for all model specifications using both simple and complex facility data, even when correctly specifying the 
model. 

On average, savings estimates for scenarios where the regression model specification omits important 
energy drivers are biased compared to cases where models include the necessary (or even extraneous) energy 
drivers. In these scenarios, the bias does not consistently over- or underpredict. Rather, the bias direction depends 
on the omitted variable. Additionally, some variable omissions resulted in increased standard errors for savings 
estimates. 
 When the model’s error is not distributed normally, the savings estimates are unbiased with only slight 
increases to standard errors. When the model’s error exhibits unaccounted for serial correlation, the savings 
estimates are slightly biased with increased standard errors. Savings estimates result in low coverage rates where 
regression model specifications do not account for serial correlation. 
 We draw several important conclusions from the simulation results. 

Evaluators should ensure they include all key energy drivers in their regression models. For most 
scenarios and regression frameworks, missing or omitted key energy drivers produced biased estimates, 
increased standard errors, and failed to capture true savings with target confidence levels. In addition, 
consequences did not appear for including extraneous parameters; so overspecification of the energy model 
may not be a concern. The primary takeaway from this is that evaluators should attempt to identify all key 
energy drivers for SEM evaluations. 

Forecast and fully specified pre/post models result in accurate, unbiased estimates under most 
scenarios. For both simple and complex facilities, the forecast and fully specified pre/post methods appear to 
produce very similar estimates and capture rates. These frameworks produced unbiased estimates (i.e., less 
than 5% of the “true” savings) for four of seven scenarios in the complex facility data and for five of the six 
scenarios in the simple facility data, outperforming the simple pre/post regression frameworks. These 
frameworks even produced an unbiased result in one of the three variable omission scenarios for both facilities. 
Note that for this comparison to be fair, we are excluding the case where a post-program event is captured by 
pre/post models and not the forecast model. This case will be discussed separately. Consequently, when non-
routine adjustments are unnecessary, we recommend evaluators use the forecast or fully specified pre/post as 
robust models for savings estimation. 
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The unreliable simple pre/post model should not be used to estimate facility energy savings. The 
simple pre/post model performed consistently with the forecast and the fully specified pre/post model for 
simple facility data, but failed to produce accurate, unbiased estimates with the complex facility data. 
Additionally, the simple pre/post almost never captured true savings at the target capture rate, even when the 
model was correctly specified. In practice, industrial facilities tend to be complex, with many potential energy 
drivers and interactions. Hence, an actual facility probably will not behave like the simple facility modeled in this 
study, and we do not recommend use of the simple pre/post regression framework. 

Evaluators should investigate serial correlation and attempt to model it in their chosen regression 
framework. As many industrial facilities have seasonal or cyclic production, data from these facilities likely 
contains some degree of serial correlation. This particularly holds true with higher-frequency data (e.g., daily 
intervals). Our results suggest that failing to account for this autocorrelation can greatly reduce the chance of 
capturing true savings parameters in the estimated confidence interval. 
Only the fully specified pre/post regression framework should be used when an event or nonroutine adjustment 
occurs in the post-program period and when an estimate of energy reduction or increase does not exist. As 
evaluators, we have encountered several cases where a facility experienced a significant change during the post-
program period. In some cases (e.g., new equipment installations or upgrades), an engineering estimate will be 
available that quantifies the energy consumption change resulting from the installation. For many situations, 
however, no estimate will be available for the expected increase or reduction in energy consumption resulting 
from a change to facility energy consumption. Examples encountered include facility layoffs, temporary building 
closures, management changes, or equipment breakdowns. In this simulated scenario, the forecast framework 
overestimated savings by including the event’s reduction in consumption in total savings attributed to the SEM 
program. Conversely, the fully specified pre/post framework accounted for the consumption reduction through 
an added indicator variable, resulting in unbiased savings estimates.  


